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Abstract

This paper explores an information intervention designed and implemented within a

school assignment mechanism in Mexico City. Through a randomized experiment, we

show that providing a subset of applicants with feedback about their academic per-

formance can enhance sorting by skill across high school tracks. We further integrate

the experimental evaluation into an empirical model of schooling choice and outcomes

to assess the impact of the intervention for the overall population of applicants. Feed-

back provision is shown to increase the efficiency of the student-school allocation, while

congestion externalities are detrimental for the equity of downstream outcomes.
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1 Introduction

The increasing reliance on randomized evaluations in economics and related disciplines has

been driven, in large part, by a desire to provide rigorous evidence to inform policymaking.

Findings from field experiments have underpinned the adoption of more effective policies and

programs by governments in a variety of settings (Banerjee and Duflo, 2011; Duflo, 2020).

However, the ambition to translate experimental insights into large-scale policy interventions

has often been hindered by a “scale-up problem,” wherein treatment effects observed in

controlled settings attenuate, or vanish altogether, when interventions are implemented at

scale across more heterogeneous populations (Banerjee et al., 2017; Al-Ubaydli et al., 2020;

Mobarak, 2022). Despite mounting evidence of this phenomenon across sectors including

education, health, and private enterprise (see, e.g., Bold et al., 2018; Cameron et al., 2019;

Araujo et al., 2021; List, 2022), the underlying mechanisms driving the negative correlation

between the scale of a given initiative and the size of its impact remain poorly understood.

This paper represents an attempt to generalize the results from a randomized evaluation

of an information intervention that provides students with individualized feedback about

their academic skills. Education choices are made under uncertainty and rely on subjective

expectations about present and future returns. Information provision may potentially resolve

this source of subjective uncertainty. Yet, it is unclear to what extent students internalize

signals that are informative for subsequent outcomes (Wiswall and Zafar, 2015a,b; Bobba

and Frisancho, 2022). Perhaps even more fundamentally, informing a large number of agents

in education markets is prone to generating a variety of spillover and equilibrium effects that

may alter the inference drawn from small-scale studies (Heckman et al., 1998a,b).

Experimental evidence drawn from a subset of students demonstrates that the provision

of performance feedback contributes to better aligning skills with high school tracks. This

reallocation effect results in higher completion rates three years post-assignment. A model-

based implementation of the same intervention at full scale shows that equilibrium effects

would largely offset the positive impact on education outcomes. These findings offer novel

insights on the channels through which cost-effective and ex-ante scalable policy solutions

may fail to deliver the expected results when implemented at scale.

The setting of our empirical analysis is the secondary education market of the metropoli-

tan area of Mexico City, in which a centralized clearinghouse coordinates admission to public

high schools in the region. Close to 300,000 students apply every year to the system by sub-

mitting rank-ordered lists of their preferred high school programs during the last year of

middle school. At the end of the school year, all applicants take a unique standardized
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admission test that determines priority in the assignment system and assesses curricular

knowledge as well as verbal and analytical aptitude. The timing of the events, which is com-

mon across school/college assignment mechanisms in other countries, implies that high stake

decisions regarding schooling and occupational trajectories may not incorporate relevant in-

formation about an applicant’s academic skills. In our sample, over 80% of the students

overestimate their performance in the test by the time they apply to the system.

We administer a mock version of the admission test among a socio-economically disadvan-

taged sample of students (N=2,493), and communicate individual score results to a randomly

chosen sub-sample before the school rankings are submitted. Results from the experiment

show that providing individual feedback on exam scores substantially shifts students’ belief

distributions regarding their own academic performance. We document relatively larger up-

dates among lower performing students, who display wider gaps between the expected score

and their actual performance in the mock exam. The performance feedback meaningfully

influences sorting across high school tracks. Better performing (lower performing) students

are more likely to get assigned into academic (non-academic) schools when compared to

those in the control group.

The sorting patterns triggered by the intervention alter subsequent educational outcomes.

Three years after school assignment, the probability of graduating from high school on time

is, on average, 5.4 percentage points higher among under achieving students who received

performance feedback. Although noisily estimated, this effect is sizable as it corresponds to a

13 percent increase when compared to the sample average in the control group. The observed

gains in persistence throughout secondary education seem to be at least partly explained

by an improved match between academic skills and schooling choices—for instance, lower-

performing students do not systematically sort into easier-to-graduate schools as a result of

the information intervention.

The score in the mock exam represents an informative signal about academic skills that

is easy to replicate for the broader population of the applicants. However, a central challenge

to scaling-up the randomized intervention in our setting is that extending performance feed-

back to all applicants would inevitably induce aggregate congestion and displacement effects

within the centralized assignment system, potentially altering the equilibrium outcomes and

the distributional implications of the policy. Using the experimental variation and data for

all applicants we estimate a model of school choice to predict the distribution of preferences

over schooling alternatives under the status quo and the counterfactual scenario of feedback

provision.
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The status quo prediction, based on estimated preference parameters for students in

the control group, replicates the key features observed in the broader applicant population.

Specifically, it closely tracks both school placement outcomes—including for students out-

side the experimental data’s support—and the equilibrium cutoff scores at the school level.

The counterfactual simulation of the information intervention accounts for congestion effects

arising from aggregate shifts in demand. On the supply side, responses are straightforward

to model in this context: schools admit applicants strictly in order of priority until they

reach their capacity limits.

The provision of performance feedback at scale enhances the ex-ante efficiency of the

student-school allocation. While there are no changes in the average participation rate to

the admission process, the share of students assigned to their most preferred option increases

by nine percentage points, from 16 percent to 25 percent, under performance feedback. How-

ever, these aggregate patterns mask substantial heterogeneity in the demand-side responses

across applicants. The bulk of the changes in the school choices between the status quo and

the information intervention are concentrated among applicants who are socio-economically

better off (high SES). These students increase their demand for academic schools and sym-

metrically decrease the demand for selective and prestigious (elite) schools as a result of

the information intervention. The lower demand-side pressure on elite programs crowds in

high-achieving and low SES applicants.

We link the out-of-sample predictions based on the choice model with a school value

added framework featuring substantial heterogeneity across students. The model further

allows for equilibrium changes in school-level peer composition to affect education outcomes.

We leverage the key features of the assignment mechanism in order to minimize the bias

arising from the non-random assignment of students across schools. By opting out from

elite schools towards other academic schools, high-SES applicants would increase school

completion rates up to 10 percentage points depending on their admission score. Conversely,

because more low-SES applicants are attending elite schools under performance feedback,

they are now performing worse in terms of high-school graduation. This is particularly the

case for those with a relatively high admission score, who would be 4-7 percentage points

less likely to complete upper secondary education on time.

The discrepancy between the results we obtain from the large-scale analysis and the small-

scale experimental evaluation can be explained by a displacement effect across applicants,

which ultimately hampers inequality in education outcomes. In this sense, successfully scal-

ing up the intervention may require providing targeted signals that are informative about the
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expected probability of graduation, conditional on attending different high-school programs.

There is growing evidence that information interventions in educational settings can

influence subjective beliefs and individual choices, although their specific effects depend

heavily on context, implementation, and design (see, e.g., Lavecchia et al., 2016; Haaland et

al., 2023). We contribute to this literature by examining how perceptions of one’s own ability

affect decisions in a setting where beliefs are closely tied to high-stakes choices. While prior

work has explored how feedback on academic performance influences educational decisions

and outcomes (Azmat et al., 2019; Dizon-Ross, 2019; Bergman, 2021), we focus on how these

effects vary with the scale of the intervention.

Evidence on the equilibrium effects of large-scale information interventions remains lim-

ited. In the context of educational policy, Andrabi et al. (2017) evaluate a market-level

experiment in Pakistani villages, showing that providing information on school quality and

pricing can shift aggregate educational outcomes. Neilson et al. (2019) explore the small

and large scale effects of an intervention in Chile that delivers personalized school infor-

mation to parents. Both studies rely on modeling assumptions about the supply side of

the education market, which are central to explaining the observed improvements in school

quality. In contrast, our setting features a centralized school assignment mechanism, which

greatly simplifies the simulation of market equilibrium (Agarwal and Somaini, 2020). This

structure enables us to more directly unpack the mechanisms through which the information

intervention operates at scale.

The standard analysis of treatment effects in randomized trials typically assumes that

an individual’s treatment assignment does not influence the potential outcomes of others—a

condition known as the no-interference assumption (Fisher, 1935; Imbens and Rubin, 2015).

In practice, researchers often address potential interference by clustering units at a higher

level where spillovers or equilibrium effects are assumed to be absent (Hudgens and Halloran,

2008; Muralidharan and Niehaus, 2017; Baird et al., 2018; Egger et al., 2022; Banerjee et al.,

2023; Muralidharan et al., 2023). However, in tightly integrated markets, it may be infea-

sible to divide the population into isolated sub-markets. This paper adopts an alternative

approach, demonstrating the value of combining field experiments with model-based esti-

mation methods in order to study the sources of interdependence in a single interconnected

market (Low and Meghir, 2017; Todd and Wolpin, 2023).
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2 Context, Experimental Design, and Data

In this section, we first describe the relevant features of the study setting. We next provide

a few details on the design and implementation of the information intervention. We finally

discuss the rich combination of administrative and survey datasets that we use throughout

the empirical analysis.

2.1 Centralized School Assignment in Mexico City

Since 1996, a local commission (COMIPEMS, by its Spanish acronym) of 16 upper sec-

ondary public institutions, or colleges, has centralized high school admissions in Mexico

City’s metropolitan area by means of an assignment mechanism. In 2014, the year of our

intervention, over 238,000 students were placed in 628 public high schools, accounting for

approximately three-quarters of enrollments in the entire metropolitan area. The remaining

portion of high school students sought enrollment in public schools with open admission (10

percent) or private schools (15 percent).

Students apply to the centralized high school assignment system during the penultimate

term of ninth grade (i.e., the final year of middle school). Prior to registration, they receive an

information booklet outlining the timeline of the application process, relevant instructions,

and a list of available schools. The booklet also includes basic school characteristics and the

cutoff scores—defined as the admission exam scores of the lowest-ranked admitted students—

for each school option over the past three years.

Along with the registration form, students complete a socio-demographic survey and

submit a ranked list of up to 20 preferred schools. At the end of the school year, all ap-

plicants sit for a standardized achievement test. Admissions priority is based on the total

score in this test. The matching algorithm processes applicants in order of priority, assign-

ing each student to their highest-ranked school choice that still has available seats. This

structure—submitting school preferences before taking the admission test—is not unique

to the COMIPEMS system. Similar timing features are observed in several other central-

ized assignment mechanisms that use strict priority rules, as well as in some decentralized

systems.1

1For instance, in centralized settings, this approach is also used in Ghana (Ajayi, 2022), Kenya (Lucas and
Mbiti, 2014), Barbados (Beuermann and Jackson, 2020), Trinidad and Tobago (Beuermann et al., 2022), and
certain Chinese provinces (Chen and Kesten, 2017). In decentralized contexts, such as the United Kingdom,
students apply to universities before receiving their A-level exam results. In the Mexican case, this timing is
designed to provide education authorities with an early “ballpark estimate” of the number of seats needed
from participating colleges for each assignment cycle.
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Each applicant is matched with one school. Whenever a tie in the score occurs for the

last available spot in a given school, members of the local commission agree on whether to

admit all of the tied students, or none of them. Unplaced applicants can request admission

to other schools with available seats after the allocation process is over or search for a seat

in schools with open admissions outside the system. When an applicant is not satisfied with

their placement, they can request admission to another school in the same way unplaced

applicants do.2 In practice, the matching algorithm performs well: among all applicants

who graduate from middle school and take the admission exam, only 12.8% remain unplaced

and 3.2% are admitted through the second round of the matching process.

The Mexican system offers three educational tracks at the upper secondary level: General,

Technical, and Vocational Education. Each of the 16 colleges within the assignment system

offers a unique track. The general track is academically oriented and includes traditional

schools that are more focused on preparing students for tertiary education. Technical schools

cover most of the curriculum of general education programs, but they also provide additional

courses allowing students to become technicians upon high school completion. The vocational

track exclusively trains students to become technically adept.

A small sub-set of schools (32 out of 628) within the assignment system in Mexico City

are affiliated with two higher education institutions (the National Polytechnic Institute and

the National Autonomous University, IPN and UNAM by their Spanish acronyms), which

are highly selective and prestigious universities, and as such the associated colleges are highly

demanded. In what follows, we define UNAM- and IPN-sponsored high school programs as

‘elite schools’. All the non-elite general track schools are considered ‘academic schools’ while

the remaining technical and vocational programs are ‘non-academic schools’.

Figure 1 depicts the distribution of cutoff scores across the three main types of high-

schools, or tracks. Academic schools are, on average, slightly more selective than non-

academic schools, but there is a large overlap across these two tracks. Some non-academic

schools have gained popularity in the system due to their reputation in placing graduates

in vocationally related occupations, which explains their relatively high cutoff scores. Elite

schools clearly stand out in terms of selectivity.

2The assignment system discourages applicants from remaining unplaced and/or to list schools that they
will ultimately not enroll in; specifically, participating in the second round will almost certainly imply being
placed in a school that is not included in the student’s original ranking.
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Figure 1: Distribution of Cutoff Scores
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Note: The cutoff score for each high school program refers to the lowest score in the admission exam of the students accepted
there in the 2014 assignment process. ‘Academic’ schools are defined as the high school programs in the general track, ‘Non-
academic’ schools are those in the technical and vocational tracks, and ‘Elite’ schools are affiliated with two higher education
institutions (the National Polytechnic Institute and the National Autonomous University, IPN and UNAM by their Spanish
acronyms).

2.2 The Information Intervention

During the second half of the 2013-14 academic year, we implemented a mock exam in 90

middle schools (see Section 2.3). One or two weeks later, and just before the submission of

the school rankings, we implemented a survey in those schools during which enumerators

provided students with individual feedback on their performance in the mock exam. The

delivery of the test scores took place in a setting secluded from other students or school

staff in order to avoid reporting biases due to the influence of peers and/or social image

concerns (Burks et al., 2013; Ewers and Zimmermann, 2015). Surveyors showed each student

a personalized graph with two pre-printed bars: the average score in the universe of applicants

during the 2013 edition of the school assignment mechanism and the average mock exam

score in the student’s class. Surveyors plotted a third bar corresponding to the student’s score

in the mock exam.3 Figure 2 depicts the timing of the activities related to the intervention.

The mock exam was designed by the same institution responsible for the official admission

3Figure A.1 in the Appendix depicts a typical sheet of the performance information that is handed out to
the students in the experimental sample. Both pre-printed bars served the purpose of providing the students
with additional elements to better frame their own scores.

7



Figure 2: Timeline of Events

JunMayAprMarFebJan

Admission
Exam

Registration:
Submission of rankings

and forms

Survey and Feedback
Provision (T)

Mock Exam

Jul Aug

Allocation

Sep

Start of
2014-15

2014

...

End of
2016-17

2015 2016 2017

Enrollment
records

Graduation (on
time) records

exam, in order to mirror the latter in terms of structure, content, level of difficulty, and

duration (three hours). The test is comprised of 128 multiple-choice questions worth one

point each, without negative marking, covering a wide range of subjects that correspond

to the public middle school curriculum (Spanish, mathematics, social sciences and natural

sciences) as well as mathematical and verbal aptitude sections.4 We informed students,

parents, and school principals about the benefits of additional practice for the admission

exam. We also made sure that the school principal was able to assign the person who is

usually in charge of the academic discipline and/or a teacher to proctor the exam, alongside

the survey enumerators.

We argue that the score in the mock exam was easy to interpret for the applicants in

the assignment mechanism while providing additional and relevant information about their

own academic skills.5 The linear correlation in our sample between performance in the mock

exam and the actual exam is 0.82. In turn, the linear correlation between a freely available

proxy of academic readiness, such as the middle school GPA, and the mock exam score is

only 0.48 (see Figure B.2 in the Appendix). Both the scores in the admission exam and in

4Since the mock exam took place before the end of the school year, 13 questions related to curricular
content that was not yet covered were not graded. We normalize the raw scores obtained in the 115 valid
questions to the 128-point scale.

5In order to support the notion that students took the mock exam seriously, we look at the pattern of
skipped questions (Akyol et al., 2021). Without negative marking, the expected value of guessing is always
higher than leaving a question blank, which implies that students have no incentive to skip a question.
Indeed, the average number of skipped questions in the mock exam was only 1.4 out of 128, and more than
80 percent of the students did not leave any question unanswered. Figure B.1 in the Appendix shows that
the average patterns of skipping questions are more consistent with binding time constraints, rather than a
lack of effort exerted in test taking. Furthermore, we do not find differential skipping patterns according to
either the score in the admission exam or individual traits linked to effort and persistence.
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the mock exam are strong predictors of later academic success.6

2.3 Sample Selection and Randomization

To select the experimental sample, we focus on middle schools with (i) a considerable mass

of applicants, more than 30, in the 2012-2013 round of the centralized mechanism and (ii)

that are located in neighborhoods with high or very high poverty levels (CONEVAL, 2018).

The latter criterion was largely influenced by the literature showing that less privileged

students tend to be relatively more misinformed when making educational choices (Avery

and Hoxby, 2012; Hastings and Weinstein, 2008; Jensen, 2010). In our context, 44 percent

of the applicants enrolled in schools from more affluent neighborhoods took preparatory

courses for the admission exam before submitting their school rankings. This figure drops

to 12 percent among applicants from schools in high poverty areas.

Schools that comply with our sample selection criteria are stratified by region and per-

formance terciles. We group them into four geographic regions and terciles of school-average

math test scores among ninth graders (see Section 2.4). Treatment assignment is randomized

within strata at the school level. As a result, 44 schools are assigned to a treatment group

in which we administer the mock exam and provide face-to-face feedback on performance,

while 46 schools are assigned to the control group in which we only administer the mock

exam. Within each school, we randomly select one ninth grade classroom to participate in

the experiment. Since the provision of feedback about test performance took place during

the survey, it cannot induce differential attrition patterns.

The match rate between the survey and the application records is 88 percent (2,828

students). As shown in Appendix Table B.2, the participation in the assignment system is

balanced between the treatment and the control group. The experimental sample comprises

the 2,493 applicants who were eligible for assignment through the matching algorithm.7

Table 1 shows that the experimental sample is largely comparable to the general population

of applicants in terms of academic credentials, such as GPA or college aspirations. However,

the average applicant in our sample scores 4-points less in the admission exam than the

average applicant in the universe (0.2 standard deviations). Consistent with our focus on

relatively disadvantaged students, the applicants in the experimental sample are less likely

6As shown in Table B.1 of the Appendix, a one-standard-deviation increase in the mock exam score is
associated with a 7.2 percentage-point increase (p-value=0.001) in the probability of graduating from high
school on time.

7Table B.3 in the Appendix provides basic descriptive statistics and a balancing test of the randomization
for various applicants’ characteristics. Mean differences are very small in magnitude, with no significant
discrepancies in any of the covariates detected across the treatment group and the control group.
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Table 1: Applicants’ Characteristics in the Population and in the Sample

All Applicants Experiment All-Experiment
Mean Mean Mean Difference

(Std. Dev) (Std. Dev) [p-value]

Grade Point Average in middle school (GPA) 8.058 8.119 -0.061
(0.871) (0.846) [0.001]

Has some disabilities (1=yes) 0.118 0.145 -0.027
(0.323) (0.352) [0.000]

Scholarship in middle school (1=yes) 0.116 0.110 0.006
(0.320) (0.313) [0.401]

Indigenous 0.041 0.093 -0.052
(0.198) (0.290) [0.000]

Plans to attend higher education (1=yes) 0.662 0.670 -0.008
(0.473) (0.470) [0.378]

Admission exam score 69.506 65.400 4.107
(20.705) (19.401) [0.000]

One parent with at least tertiary education (1=yes) 0.236 0.147 0.089
(0.425) (0.354) [0.000]

Average math score in middle school (z-score) 0.000 -0.208 0.208
(1.000) (0.712) [0.000]

Neighborhood SES index (z-score) 0.000 -1.504 1.504
(1.000) (0.494) [0.000]

Observations 284,412 2,493

Note: The first two columns report means and standard deviation (in parentheses) of individual characteristics between
the overall population of applicants and the experimental sample. The third columns displays mean differences and the
associated p-values (in brackets) for the null hypothesis of equal means. The observations in the first column comprise all
the applicants in the year 2014 who were eligible to be assigned through the matching algorithm. The observations in the
second column comprise the experimental sample of the randomized information intervention.

to have parents with tertiary education, they attend middle schools with lower performing

students, and reside in poorer neighborhoods.

2.4 Data and Measurement

Our analysis draws on several data sources. First, we have access to administrative data

on different cohorts of applicants for several rounds of the assignment mechanism. These

records include socio-demographic variables, such as gender, age, and parental education,

among others. They also contain information on school preference rankings, admission exam

scores, and placement outcomes. We link this dataset with the school-average math test

scores in the national standardized examination (ENLACE) applied in ninth grade.
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Second, we collect detailed survey data with information on the subjective distribution

of beliefs about performance in the admission exam for the students in the experimental

sample. In order to help students understand probabilistic concepts, the survey relies on

visual aids (Delavande et al., 2011). We explicitly link the number of beans placed in a cup

to a probability measure, where zero beans means that the student assigns zero probability

to a given event and 20 beans means that the student believes the event will occur with

certainty. Students are provided with a card divided into six discrete intervals of the score.

Surveyors then elicit students’ subjective expectations about test performance by asking

them to allocate the 20 beans across the intervals to represent the chances of scoring in

each bin. Appendix A provides more details on the elicitation of the individual data on

beliefs in our setting. There are a few students with missing values in the beliefs data (247

observations, or 10% of the sample), which implies an effective sample size of 2,246 applicants

for the analysis presented in Section 3.2. The incidence of missing values is balanced between

the treatment and the control group (coeff.=0.006, p-value=0.367).

Third, we assemble and harmonize longitudinal data on the schooling trajectories through

upper secondary education for the students in the experimental sample. The resulting dataset

allows us to measure high school enrollment, drop-out during the tenth grade, and graduation

on time from high school (twelfth grade)—that is, three years after the assignment process

where the experiment took place (2014). It is not possible to track those applicants who end

up enrolling in schools outside the centralized system. About 80 percent of the applicants

in the control group enroll by the next academic year in the high school program in which

they were assigned through the centralized process. However, only 45 percent successfully

graduate from high school after three years. These figures clearly reflect inadequate academic

progress through upper secondary education, due to either school dropout or grade retention,

both strong indicators of a mismatch between schooling careers and students’ individual

skills.

Fourth, we match the individual identifiers for all the applicants who participated in the

centralized assignment system with their ENLACE scores in twelfth grade. This is a good

proxy for the probability of graduating from almost any high school in the country, includ-

ing private schools (Dustan et al., 2017; Estrada and Gignoux, 2017; Dustan, 2020).8 As

Appendix Table B.4 shows, more than three quarters of the students who eventually com-

8The UNAM’s representatives opted for not administering the ENLACE exam to its students (16 high-
school programs out of 628 participating schools in the centralized assignment system, see Section 2.1). The
ENLACE test was discontinued in 2014, and so we construct the indicators for high-school graduation for
the ninth graders in the 2010 cohort of applicants.
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plete secondary education they do so in the statutory three-year period. This share is pretty

much stable across high-school tracks. To the extent that we cannot track delayed gradua-

tion rates for the experimental sample, we use on-time graduation as our main outcome of

interest throughout the empirical analysis.

3 Experimental Evidence

Providing information about individual performance in the mock exam potentially allows

students to revise their beliefs and thereby make high-school track choices that are better

aligned with their academic potential, which, in turn, may lead to better educational out-

comes. In this section, we document the effect of the performance feedback on subjective

expectations about academic performance, as well as realized outcomes regarding school

placement and subsequent schooling trajectories.

3.1 Empirical Model

We consider linear regression models of the following form:

Yij = α0 + α1Tj + α2Aij + α3AijTj + δ′Xij + εij, (1)

where Yij is an individual-level outcome (expected or realized) for student i in one of the

90 middle schools j of the experiment. The indicator variable Tj takes a value of one if

the school is in the treatment group and hence its students receive performance feedback in

the mock exam, and zero otherwise. The Aij variable is a standardized index of academic

achievement, which is obtained as the weighted average of the GPA in middle school, the

score in the mock exam, and the score in the admission exam.9 The vector Xij contains

a set of dummy variables that correspond to the randomization strata (location × school-

average test score indicators), pre-determined characteristics (gender, type and day-shift of

the school of origin, previous experience with practice exams providing feedback, aspirations

to attend higher education, an index of personality traits, an index of parental characteristics,

and a household asset index), as well as a set of indicator variables for whether each of the

covariates has missing data (Zhao and Ding, 2024). Finally, εij is an individual error term

that is arbitrarily correlated within school j and i.i.d across schools.

9A GLS-weighting approach (Anderson, 2008) increases efficiency by ensuring that outcomes that are
highly correlated with each other receive less weight, while outcomes that are uncorrelated and thus represent
new information receive more weight.
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The parameter α1 measures the average treatment effect of receiving the performance

feedback on the outcome Yij, while α3 captures how students differentially respond to the

feedback in terms of the achievement index, Aij. This specification captures the fact that

inaccurate beliefs about academic proficiency can shape the perceived value of attending a

given high-school program. The performance feedback can potentially alter those beliefs as

well as the slope of students’ outcomes with respect to their actual academic readiness. We

estimate the parameters of equation (1) by OLS. Given the relatively large array of hypothe-

ses considered throughout the analysis, we complement the usual asymptotic inference by

computing p-values that are adjusted for multiple hypothesis testing across different families

of outcomes (List et al., 2019).10

3.2 Subjective Expectations about Test Performance

Panel A in Figure 3 displays the cumulative distributions of the perception gap, defined

as the difference between the expected score and the realized performance in the mock

exam, for students in the treatment and control groups.11 In the control group, over 80%

of the applicants overestimate their performance in the test. The performance feedback

substantially shifts to the left the distribution of the perception gap, with an average gap of

6.5 points for treated applicants and 14.7 points for control applicants (out of a 128-point

scale). Panel B in Figure 3 presents evidence on the relationship between the perception gap

and our index of academic achievement for students in the treatment and control groups.

Updates on the expected score in response to performance feedback occur along the entire

distribution of the achievement index, with relatively larger gap reductions among lower

performing students.

Table 2 shows the OLS estimates of the effect of the information intervention on different

moments of the individual distribution of beliefs about test performance. The first column

documents that providing feedback about test performance decreases the mean of the belief

distributions by 6.9 points out of a sample average of 75.6 in the control group (p-value =

0.001). We find a similar effect when we alternatively consider the median of the individual

10The Romano-Wolf correction (Romano and Wolf, 2005a,b, 2016) asymptotically controls the family-wise
error rate, that is, the probability of rejecting at least one true null hypothesis among a family of hypotheses
under test. This correction is considerably more powerful than earlier multiple-testing procedures, given
that it takes into account the dependence structure of the test statistics by re-sampling from the original
data.

11Assuming a uniform distribution within each interval of the score, the expected scores are constructed
as the summation over intervals of the product of the mid-point of the bin and the probability assigned by
the student to that bin.
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Figure 3: Gap between Expected Scores and Realized Scores in the Mock Exam
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Note: Panel A shows the cumulative density of the difference between the expected scores and the realized scores in the
mock version of the admission exam. Panel B shows non-parametric locally weighted estimates of the relationship between the
perception gap and the achievement index. For more details on the elicitation of beliefs in the survey data, refer to Appendix
A.

belief distributions in the second column, with an 11% drop relative to the corresponding

sample average in the control group (p-value = 0.001). The negative treatment effect on

expected performance in the mock test is partly attenuated by the positive updating pat-

terns among the highest performing students. An increase of one standard deviation in the

achievement index corresponds to a right-shift in the location of the belief distribution by

2.9 (for the mean) and 3.1 points (for the median) in the treatment group relative to the

control.

The estimates reported in the last two columns of Table 2 document that the performance

feedback meaningfully decreases the uncertainty of students’ predictions, with average reduc-

tions in the dispersion of the individual belief distributions of 2.8 points (p-value = 0.001).

This corresponds to 11% (for the standard deviation) and 16% (or the inter-quartile range) of

the sample average in the control group. We find limited evidence of heterogeneous updating

on the second moment of the belief distributions by the value of the achievement index.

Overall, these results establish that providing information about individual performance

in the mock exam allows applicants to substantially revise their expectations about academic

readiness. The evidence underscores the informativeness of the performance feedback for all

students in our sample. However, the magnitude and direction of the adjustment is strongly

associated with the level of academic achievement.12

12In our companion paper (Bobba and Frisancho, 2022), we explore in further details the process of belief
updating spurred by the performance feedback.
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Table 2: Performance Feedback and Beliefs about Test Performance

Mean Median Std. Dev. IQR

Treatment -6.935 -8.892 -2.773 -2.789
[0.000] [0.000] [0.000] [0.000]
{0.001} {0.001} {0.001} {0.001}

Achievement index 4.550 4.839 -0.621 -1.234
[0.000] [0.000] [0.021] [0.011]
{0.001} {0.001} {0.010} {0.007}

Treatment × Achievement index 2.908 3.109 -0.441 -0.875
[0.000] [0.000] [0.232] [0.193]
{0.001} {0.001} {0.106} {0.106}

Mean Control 75.6 78.8 17.4 24.2
Number of Observations 2246 2246 2246 2246
Number of Clusters 90 90 90 90
R-squared 0.289 0.282 0.082 0.057

Note: The dependent variable “Mean” is constructed as the summation of the mid-values in each discrete
interval of the support multiplied by the associated probability assigned by the student. The dependent
variable “Median” is defined as the midpoint of the interval in which the cumulative density first surpasses
0.5 (11/20 beans or more). The dependent variable “Std. Dev.” is constructed as the square root of
the summation of the mid-values in each discrete interval of the support multiplied by the square of the
associated probability assigned by the student minus the square of the constructed mean. The dependent
variable “Inter-Quantile Range (IQR)” is defined as the difference between the midpoints of the intervals
that accumulate 75 percent and 25 percent of the probability mass. For more details on the elicitation
of beliefs in the survey data, refer to Appendix A. The Achievement Index is a GLS-weighted average
(Anderson, 2008) of the GPA in middle school, mock exam score, and exam score. p-values reported in
brackets refer to the conventional asymptotic standard errors while those in curly brackets are adjusted
for testing each null hypothesis across multiple outcomes through the step-wise procedure described in
Romano and Wolf (2005a,b, 2016). Both inference procedures take into account the clustered structure of
the individual error terms at the middle school level.

3.3 School Placement

Table 3 presents OLS estimates of the impact of the information intervention on the distri-

bution of applicants across high school tracks. On average, the likelihood of assignment to

non-academic programs increases by 4.6 percentage points, with a corresponding decline in

academic placements. Although these average effects are not statistically significant (p-value

= 0.11), we observe stronger evidence of a composition effect by the level of academic per-

formance. Specifically, a one-standard-deviation increase in the performance index among

treated students is associated with a 6.5 percentage-point reduction in the probability of be-

ing placed in a non-academic program—a 16 percent decrease relative to the control group

mean. Estimates in the final column of Table 3 indicate that the intervention does not

significantly affect the probability of assignment to elite schools.

Exposure to performance feedback does not systematically affect admission exam scores,
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Table 3: Performance Feedback and Placement Outcomes

Non-Academic Academic Elite

Treatment 0.046 -0.044 -0.002
[0.077] [0.078] [0.861]
{0.110} {0.110} {0.842}

Achievement index -0.079 -0.086 0.165
[0.000] [0.000] [0.000]
{0.002} {0.001} {0.001}

Treatment × Achievement index -0.065 0.041 0.024
[0.015] [0.045] [0.247]
{0.020} {0.065} {0.253}

Mean Control 0.453 0.418 0.129
Number of Observations 2493 2493 2493
Number of Clusters 90 90 90
R-squared 0.100 0.061 0.336

Note: The dependent variable is an indicator variable that is equal to one if the applicant is assigned
to a given group of schools (i.e., Non-Academic, Academic, and Elite schools). The achievement index
is a GLS-weighted average (Anderson, 2008) of the GPA in middle school, mock exam score, and
exam score. p-values reported in brackets refer to the conventional asymptotic standard errors, while
those reported in curly brackets are adjusted for testing each null hypothesis across multiple outcomes
through the step-wise procedure, as described in Romano and Wolf (2005a,b, 2016). Both inference
procedures take into account the clustered structure of the error terms at the middle school level.

or the likelihood of assignment in the matching process (see Appendix Tables B.2 and B.5).

This suggests that the treatment effects on school placement are primarily driven by changes

in applicants’ school rankings, which are shown in Table B.6 in the Appendix. Overall,

these results indicate that providing performance feedback meaningfully influences school

placement within the assignment system. Higher-achieving students in the treatment group

are more likely to be placed in academic—but not elite—programs.

3.4 Educational Trajectories

As shown in the previous sub-section, the provision of performance feedback likely improved

sorting patterns across high-school tracks. This reallocation effect within the assignment

mechanism may potentially alter students’ academic trajectories and downstream educa-

tional outcomes.

The point estimates in the first two columns of Table 4 show no meaningful differences

in high school enrollment rates or first-year dropout rates between students in the treatment

and control groups. However, the results reported in the third column of Table 4 show that
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Table 4: Performance Feedback and High School Outcomes

Enrollment Dropout Graduation
1st year on Time

Treatment -0.003 0.012 0.022
[0.789] [0.668] [0.252]
{0.936} {0.920} {0.497}

Achievement index 0.068 -0.095 0.138
[0.000] [0.001] [0.000]
{0.001} {0.003} {0.001}

Treatment × Achievement index -0.021 -0.006 -0.032
[0.352] [0.807] [0.088]
{0.590} {0.936} {0.198}

Mean Control 0.813 0.248 0.447
Number of Observations 2493 2024 2358
R-squared 0.045 0.076 0.090

Note: The dependent variable “Enrollment” denotes an indicator variable that is equal to one if
students enroll in the high school programs they were assigned to, and zero otherwise. The dependent
variables “Dropout, 1st year” captures whether the student stopped attending classes or actively
dropped out of school, conditional on enrollment. The dependent variable “Graduation on Time”
denotes an indicator variable that is equal to one if the student successfully completes the high school
programs three years after placement in tenth grade and zero otherwise. The achievement index
is a GLS-weighted average (Anderson, 2008) of the GPA in middle school, mock exam score, and
exam score. p-values reported in brackets refer to the conventional asymptotic standard errors, while
those reported in curly brackets are adjusted for testing each null hypothesis across multiple outcomes
through the step-wise procedure, as described in Romano and Wolf (2005a,b, 2016). Both inference
procedures take into account the clustered structure of the error terms at the high school level.

the probability of graduating on time (unconditional on enrollment in tenth grade) is 5.4

percentage points higher for students who receive performance feedback and who score one-

standard deviation below the mean (=2.2p.p+3.2p.p) when compared to equally achieving

students who do not receive any feedback.13 Importantly, as shown in Table B.8 in the

Appendix, the observed gains in persistence throughout secondary education do not seem to

be explained by the fact that lower-performing students tend to sort into easier-to-graduate

schools as a result of the information intervention.

While statistically imprecise, the magnitude of this effect is economically significant, as

it corresponds to a 13 percent increase in high-school graduation rates when compared to

the sample mean in the control group of 0.45. The effect size on the rate of high-school

13We were unable to obtain the high-school graduation records for approximately 5% of the students in
our sample, which explains the discrepancy in the number of observations between column 1 and column 3 of
Table 4. The associated Lee bounds (Lee, 2009) are narrow and broadly consistent with the point estimates
reported in the main text (see Appendix Table B.7).
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graduation roughly coincides with the magnitude of the impact of a one-deviation increase

of the score in the mock exam (see Appendix Table B.1).14

4 Scaling-up the Information Experiment

The evidence presented in the previous section suggests that providing students with infor-

mation about their academic proficiency during the transition from lower to upper secondary

education can improve the allocation of skills across high school tracks. In this section, we

embed the randomized intervention within a discrete choice model of schooling decisions

allowing us to extrapolate the impact of performance feedback beyond the experimental

sample. We then use a school value added model to link the out-of-sample predictions about

the student-school allocations with subsequent graduation outcomes.

4.1 Preferences Over School Characteristics

We model the indirect utility that student i gets from attending school j as:

uij = αs(j) + β′
s(j)xi + γ′xidij + ρ′xicj + εij, (2)

where the composite term αs(j) + β′
s(j)xi denotes the net returns of attending a particular

college s, i.e. a group of high-school programs j that share the same track (non-academic,

academic, or elite) and that belong to the same public institution of upper secondary edu-

cation.15 The vector xi contains an array of standardized individual characteristics, which

broadly capture skill measures and demographics (observed or unobserved to the applicant),

such as the score in the mock exam, the cumulative GPA in middle school, an index of

socio-economic conditions in the neighborhood of residence of the applicants, the average

ENLACE math score in the students’ middle school of origin, and parental education. The

same vector xi of individual characteristics is also interacted with the geodesic distance dij

14Figure B.3 in the Appendix visually displays the relationship between the rates of graduation on time
from secondary education and the achievement index separately for the treatment and control groups. While
there is a small effect of performance feedback along the entire distribution of academic achievement, its
impact on schooling trajectories becomes more clearly visible around the left tail. Since under-achieving
students also tend to have lower graduation rates, the information intervention effectively contributes to
“leveling the playing field” in our setting.

15The size of the experimental sample is too small to precisely estimate the 600+ school-specific intercepts
and the associated interaction terms. We thus group the high-school programs in the centralized system into
16 college-specific intercepts, αs(j), and the associated student-college match effects, βs(j). By doing so, we
substantially reduce the number of parameters that need to be estimated in equation (2).
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(in kilometers) between the location of the middle school of applicant i and high-school

program j as well as with the degree of selectivity of each high-school program cj, which

we measure through the admission cutoff score in the previous round of the assignment

mechanism.

The vector of parameters γ captures the average commuting cost of attending a par-

ticular high school program while accounting for potential heterogeneity across applicants.

Analogously, ρ embeds any utility cost or benefit associated to being assigned to schools

with a given level of peers’ quality and/or academic requirements. Tuition fees are negligible

in this setting and they do not vary between schools in the same college s, so that the small

differences in the out-of-pocket expenses across high-school programs are captured by the

αs(j) parameters.

The preference shock, εij, is assumed to be i.i.d. across i and j, following a type-I

extreme value distribution with normalized scale and location. Conditional on xi, dij is

assumed orthogonal to εij. This assumption is usually invoked in the school choice literature

(see, e.g., Agarwal and Somaini, 2020). It is violated if students systematically reside near

the schools for which they have idiosyncratic tastes. This assumption becomes plausible

in our case as we have rich micro-data on students. In addition, priorities in the school

assignment mechanism do not depend on student locations, thereby alleviating issues related

to residential sorting.

Since discrete choice models depend on differences in payoffs, we normalize the determin-

istic part of the utility of not being assigned to any school program within the assignment

system to zero. This outside option captures the value of not attending high-school, or the

value of any other labor market entry opportunity not directly observed in the data.

4.2 Estimating Preferences

We have access to individual-level data on rank-ordered lists and placement outcomes. Both

sources of information are potentially valuable for estimating preference parameters. How-

ever, school rankings may deviate from true preference orderings due to the cap of 20 schools

in the submitted rank-ordered lists (Haeringer and Klijn, 2009; Calsamiglia et al., 2010) or

possible strategic mistakes in applications (Hassidim et al., 2017; Artemov et al., 2023).

A more robust estimation approach relies on the assumption that the realized matching

equilibrium is stable, which is likely satisfied in the large-market matching mechanism that

we study. Under stability, the observed match between an applicant and a given school can

be interpreted as the outcome of a discrete choice model with individual-specific choice sets
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(Fack et al., 2019). These choice sets solely depend on the scores in the admission exam for

most programs.16

The parameters of the indirect utility function in (2) are estimated by maximum like-

lihood separately for the treatment and the control samples. This strategy allows for the

possibility that feedback provision can alter the choice environment in which applicants

operate.

Table 5 shows the selected estimates of preference parameters over high-school tracks and

programs’ selectivity that are re-scaled by the disutility of the distance (or willingness to

travel). The estimated distribution of preferences over school characteristics differ somewhat

between the applicants who received the performance feedback and those in the control

group, as shown in the third column of the table. For instance, higher-SES students (i.e.

those who reside in more socio-economically advantaged neighborhoods and/or who attended

better middle schools) who receive the performance feedback attach a more negative value

to an elite school. The size of the estimated effect for a one-standard-deviation increase in

the neighborhood SES index is equivalent to commuting to a school that is 8.5 km away

when compared to the applicants at the mean of the SES distribution. The corresponding

commuting cost for the applicants in the control group is 1.5 km, which is not statistically

different from zero.

Instead, the willingness to travel attached to the degree of selectivity of the schools—as

measured by the cutoff scores from the previous year—shows a positive gradient with respect

to both academic achievement and SES, which is steeper for the applicants in the treatment

group when compared to those in the control group.

The positive and negative gradients discussed above tend to offset each others for treated

students’ valuations, thereby possibly explaining the lack of both average and heterogeneous

effects on assignment into elite schools, as shown in the third column of Table 3. Taken

together, these patterns of heterogeneity in the estimated preference distributions within

the the experimental sample shape the sorting and displacement effects of the intervention

at scale that we later document in Section 5.

4.3 Out-of-Sample Predictions

Table B.9 in the Appendix displays the full set of estimated parameters for the more flexible

specification at the college-level, as depicted in equation (2). We use these estimates to

16Elite schools further impose a GPA requirement of at least 7 out of 10 points. Most of the applicants to
those high school programs meet this requirement (more than 90 percent in every round of the assignment
system).
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Table 5: Willingness to Travel for School Characteristics

Control Sample Treated Sample Control-Treated

WTT Est WTT Est T-test

(Std. Err.) (Std. Err.) [p-value]

[Elite]j × [Mock Score]i -0.2144 -2.3344 1.0516
(1.3191) (1.5246) [0.2931]

[Elite]j × [SES Index]i -1.5265 -8.4959 2.0903
(1.8019) (2.8053) [0.0367]

[Elite]j × [Middle-School Math Score]i 0.7386 -2.9515 1.7464
(1.2932) (1.6710) [0.0809]

[Academic]j × [Mock Score]i 0.6327 -1.4862 2.0833
(0.6604) (0.7735) [0.0373]

[Academic]j × [SES Index]i -0.8522 0.2950 -0.6901
(0.9252) (1.3809) [0.4902]

[Academic]j × [Middle-School Math Score]i -0.0962 0.2064 -0.2664
(0.6732) (0.9144) [0.7899]

[Non-Academic]j × [Mock Score]i 1.1555 -1.1870 2.3631
(0.6517) (0.7470) [0.0182]

[Non-Academic]j × [SES Index]i -0.2780 -1.9743 -1.0007
(0.9432) (1.4085) [0.3171]

[Non-Academic]j × [Middle-School Score]i 0.2538 -0.4473 0.6388
(0.6673) (0.8713) [0.5230]

[Cutoff Score]j × [Mock Score]i 0.2707 0.6569 -1.0162
(0.2378) (0.2965) [0.3097]

[Cutoff Score]j × [SES Index]i 0.7705 1.0730 -0.4850
(0.3479) (0.5175) [0.6277]

[Cutoff Score]j × [Middle-School Math Score]i 0.1628 1.2866 -2.3816
(0.2887) (0.3733) [0.0173]

Note: This table displays maximum-likelihood estimates that are normalized by the distance coefficient for selected
match coefficients of equation (2). Standard errors reported in parenthesis are computed using the delta method. The
third column displays the t-statistics and the associated p-values (in brackets) for the null hypotheses of equal coefficients
between the control and the treated samples. The full set of model estimates at the college-level is reported in Table B.9.

predict the indirect utilities for the universe of applicants in the centralized assignment

system. Since the students outside of the experimental sample do not take our mock exam,

we replace that covariate in the vector xi with the admission exam score. We run the Serial

Dictatorship algorithm that is in place in the assignment system relying on the priority

criteria and school capacities. School preferences are vertical (i.e., school programs simply

accept or reject prospective applicants in descending order based on their exam scores until

seat capacities are met), hence this algorithm delivers the unique stable matching equilibrium
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Table 6: Model Fit on Average Assignment Outcomes by SES Categories

Very Low SES Low SES Middle SES High SES
Data Model Data Model Data Model Data Model

Applied in the system (1=yes) 1.00 0.97 1.00 0.99 1.00 0.99 1.00 1.00

Assigned in the system (1=yes) 0.91 0.91 0.88 0.92 0.86 0.93 0.84 0.94

Non-Academic schools, vocational track 0.16 0.18 0.14 0.13 0.13 0.10 0.10 0.08

Non-Academic schools, technical track 0.30 0.27 0.27 0.27 0.25 0.25 0.22 0.23

Academic, above-median selectivity 0.23 0.20 0.30 0.28 0.30 0.31 0.32 0.33

Academic, below-median selectivity 0.17 0.21 0.09 0.13 0.04 0.08 0.03 0.04

Elite schools 0.13 0.14 0.20 0.18 0.28 0.26 0.34 0.32

Selectivity (z-cutoff score) 0.32 0.24 0.65 0.56 0.96 0.90 1.21 1.15

Note: The averages displayed in the odd columnd are computed from the data of the assignment mechanism in the year 2014 (see Section 2).
The averages displayed in the even columns are computed by running the Serial Dictatorship algorithm that is in place for the COMIPEMS
system, using the estimated preferences of the control group (see Table B.9 in the Appendix), the individual scores in the admission exam,
and the school capacities as inputs.

allocation (Roth and Sotomayor, 1992).17

In Table 6 we compare the average outcomes of the school assignment system with those

generated through the matching equilibrium using the estimated preferences of the applicants

in the control group. Mean-differences are very small for the outcomes considered across the

entire SES distribution. This result was not guaranteed a priori, given the fact that the

experiment is targeted toward applicants from relatively disadvantaged backgrounds (see

Section 2.3).

Another way to assess the validity of the extrapolation is by looking at the equilibrium

cutoff scores. The linear correlation between the observed cutoff scores and the model-

based cutoff scores is 0.88. Figure 4 provides a scatter plot of the relationship between the

cutoff scores in the model and in the data for the schools in the assignment mechanism. As

expected, the fit of the model improves for more selective options with high cutoff scores—

mostly elite schools, but also for a few academic and non-academic options. These schools

are more likely to be oversubscribed, which implies that the associated cutoff scores are

well-defined equilibrium objects under stable matching (Azevedo and Leshno, 2016; Fack et

al., 2019).

This evidence broadly supports the validity of the out-of-sample predictions based on

the estimated distribution of preferences for the experimental control group. Therefore,

we postulate that the corresponding predictions based on the estimated preferences for the

applicants in the treatment group likely approximate a counterfactual scenario in which the

17While we estimate the school choice model by assuming stable matching but not truth-telling (see
Section 4.2), we can allow students to be truthful when studying matching outcomes. This holds as long as
preference estimates are consistent (Artemov et al., 2023).
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Figure 4: Model Fit on Cutoff Scores
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Note: In this figure, we report the cutoff scores for the 429 school programs (68% of the total participating programs) that
are contained in the choice sets of the applicants of the experimental sample. For an analogous chart with the cutoffs of all the
628 school programs, refer to Figure B.4 in the Appendix. The observed cutoffs are computed from the data of the assignment
mechanism in the year 2014 (see Section 2). The simulated cutoff scores displayed in the scatter plot are computed by running
the Serial Dictatorship algorithm that is in place for the COMIPEMS system using the estimated preferences of the control
group (see Table B.9 in the Appendix), the individual scores in the admission exam, and the school capacities as inputs.

broader population of applicants would be given additional information about their academic

skills. This is akin to implementing a policy that mandates the universal implementation of

a mock exam or, alternatively, disclosing admission exam scores to the applicants before the

submission of the rank-ordered lists (see Figure 2).

4.4 Linking Sorting across Schools with Education Outcomes

We consider a potential outcomes framework that maps any student-school match into ed-

ucational outcomes. In particular, we posit that the potential outcome of student i if she is

matched to school j can be written as:

Yij = δs(j) + γ′
s(j)xi + λ′x̄j + νij, (3)

where, as before, s(j) denotes a particular college (i.e., group of high-school programs). The

vector xi contains the same standardized individual characteristics of equation (2) except

for the mock score (i.e. the cumulative GPA in middle school, an index of socio-economic
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conditions in the neighborhood of residence of the applicants, the middle school-average of

ENLACE math test scores, and parental education). In this framework, δs(j) measures the

average effect of college s, γs(j) corresponds to the vector of match effects for students with

observed type xi in college s, and νij denotes any unobserved factor influencing education

outcomes. We allow for equilibrium changes in peer composition to affect education outcomes

by taking advantage of the fact that the parameters of the value added model (3) vary at

the college level. Therefore, we can include the vector x̄j of average skills and demographics

at the school level.

Students are not randomly assigned to schools or colleges. However, school placement

under the assignment mechanism depends exclusively on two student-level observable factors:

ranked-order lists (ROL) and the scores in the admission exam. We add ROL fixed effects in

equation (3) in order to compare outcomes between students with the same school rankings

and other observable covariates (Angrist and Rokkanen, 2015; Abdulkadiroglu et al., 2020).18

We posit that the remaining variation in school placement is due to idiosyncratic differences

in the score of the admission test (e.g., a good or a bad exam day) that are assumed to be

uncorrelated with the error term νij.

Table 7 reports OLS estimates for selected coefficients from the value-added model, ag-

gregated at the track level, both without and with ROL fixed effects. The estimates differ

somewhat across the two specifications, indicating that controlling for school rankings helps

account for some of the unobserved factors influencing student allocation. On average, at-

tending an elite high school program reduces the probability of on-time graduation by 18

percentage points, relative to both academic and non-academic programs, against a baseline

on-time graduation rate of 41 percent following school assignment. Some of the interaction

effects based on student skills and demographics are statistically significant, though they

are notably smaller in magnitude than the average treatment effects. Appendix Table B.10

presents the full set of OLS estimates at the college level for our preferred specification with

ROL fixed effects.

5 Counterfactual Simulations

In this section, we use the empirical framework introduced in Section 4 to assess the effects

of a counterfactual, large-scale implementation of the information intervention. We begin

18Under the serial dictatorship, the only part of the ranked-order lists (ROL) that ultimately plays a
role in the allocation is the subset of schools ranked in cut-off descending order. We use those schools to
construct the ROL fixed effects.
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Table 7: Estimates of the Value Added Model (On-time Graduation)

OLS OLS with ROL fixed effects

[Elite]j -0.192 -0.175
(0.006) (0.024)

[Elite]j × [GPA]i 0.081 0.069
(0.004) (0.008)

[Elite]j × [SES index]i 0.027 0.014
(0.004) (0.009)

[Elite]j × [Parent Education]i 0.005 0.002
(0.003) (0.006)

[Academic]j 0.027 -0.002
(0.003) (0.013)

[Academic]j × [GPA]i 0.020 0.011
(0.002) (0.005)

[Academic]j × [SES index]i 0.001 0.009
(0.002) (0.006)

[Academic]j × [Parent Education]i -0.002 -0.006
(0.003) (0.006)

Number of Observations 182,824 182,824

Note: This table displays OLS estimates and asymptotic standard errors (in parenthesis) for selected
coefficients of equation (3). The full set of estimates is reported in Table B.10 in the Appendix.

by examining how student-school allocations under feedback provision differ from the status

quo. Next, we analyze the intervention’s impact on school choices, along with the resulting

equilibrium effects that emerge in a centralized assignment system with fixed school capaci-

ties. Finally, we quantify the changes in educational outcomes, highlighting how these effects

are shaped by the sorting patterns induced by feedback provision at scale.

5.1 Aggregate Matching Outcomes

Table 8 highlights aggregate outcomes of the school assignment mechanism under both the

status quo and the information intervention scenarios. As shown in the first row, there is no

change at the extensive margin of the admission process: despite the provision of performance

feedback, there is no evidence that students opted out of the centralized assignment system

in favor of outside options.

The share of students successfully assigned increases by 2 percentage points. While mod-

est, this improvement speaks directly to a gain in the efficiency of the matching equilibrium.

More notably, students are more likely to be matched to schools they prefer under the infor-
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Table 8: The Effect of the Information Intervention on Aggregate Outcomes

Status Quo Performance Feedback Difference
Applied in the system (1=yes) 0.99 0.99 0.00
Assigned in the system (1=yes) 0.89 0.91 0.02
Rank of assigned school 6.41 5.43 -0.98
Assigned in top choice 0.16 0.25 0.09
Assigned in elite schools 0.22 0.22 0.00
Assigned in academic schools 0.41 0.40 -0.01
Assigned in non-academic schools 0.37 0.38 0.01

Note: The average outcomes displayed in the first (second) column are obtained by running the Serial Dictatorship
algorithm using as inputs the estimated school valuations of the experimental control (treatment) group, as shown in
Table B.9 in the Appendix, the individual scores in the admission exam, and the school capacities.

mation intervention. The average student is assigned to a school ranked one position higher

on their preference list compared to the status quo (5.4 vs. 6.4). Similarly, the proportion

of students assigned to their top-ranked school increases by 9 percentage points, from 16

percent to 25 percent.

On average, there is no change in the aggregate distribution of students across tracks.

The final rows of the table show that the shares of students placed in elite, academic, and

non-academic programs remain virtually unchanged across the two scenarios. However, this

overall stability of the assignment system masks substantial heterogeneity in the sorting

patterns triggered by the information intervention, which we explore in the following sub-

sections.

5.2 School Choices

We compute the predicted shares of academic and elite programs among the set of school

programs that yield higher utility than the outside option for each applicant, under both the

status quo and the feedback scenarios. Panels A and B of Figure 5 reveal that the provision

of performance feedback leads to a general increase in the demand for academic schools,

accompanied by a corresponding decline in the demand for elite schools.

Consistent with these shifts in preferences, Figure B.5 in the Appendix shows that cutoff

scores for most elite programs slightly decline under the information intervention, while

those for academic programs increase on average. Overall, the combined changes in demand

and resulting movements in cutoff scores help explain the limited aggregate effect of the

intervention on average sorting across high school tracks, as documented in the final rows of

Table 8.
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Figure 5: The Effect of Providing Performance Feedback on Track Choices
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(b) Aggregate Shares of Elite Schools
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(c) Shares of Academic Schools by SES
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(d) Shares of Elite Schools by SES

Note: This figure displays box- and-whisker plots for the shares of academic schools and elite schools as implied by the
estimated preference distributions for the control group and the treatment group (see Table B.9 in the Appendix). The central
lines within each box denote the sample medians, whereas the upper and lower level contours of the boxes denote the 75th and
25th percentiles, respectively. The whiskers outside of the boxes denote the upper and lower adjacent values, which are values
in the data that are furthest away from the median on either side of the box, but are still within a distance of 1.5 times the
interquartile range from the nearest end of the box (i.e., the nearer quartile).

Panels C and D of Figure 5 replicate the analysis of predicted shares of academic and elite

school choices under the two scenarios, this time disaggregated by discrete categories of the

SES index. The overall shift in school preferences observed in the upper panels is primarily

driven by relatively better-off applicants—those residing in neighborhoods with lower poverty

rates. This pattern aligns with the estimates from the school choice model presented in Table

5, which reveal a strong negative gradient in the perceived value of attending an elite school

with respect to socio-economic status among treated students. It is important to note that

the experimental sample was composed primarily of disadvantaged students. Therefore, the

limited responsiveness of low-SES applicants to the intervention in terms of high school track

27



Figure 6: The Effect of Providing Performance Feedback on High-School Admission (Per-
centage Points)
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Note: This figure shows the percentage changes between the Information Policy and the Status Quo scenarios in the shares of
applicants that are assigned to academic schools (Panel A) and elite schools (Panel B) by discrete categories of socio-economic
status (Y-axis) and the score in the admission exam (x-axis).

choices is consistent with the evidence discussed in Section 3.3 (see in particular Table B.6

in the Appendix).

5.3 School Placement

The school choice responses triggered by the information intervention, as documented above,

are likely to generate equilibrium effects within the system. In particular, lower demand

from high-SES students frees up seats in elite programs, making room for disadvantaged

students with high admission scores. Figure 6 documents the presence of those displacement

patterns in the matching equilibrium under performance feedback when compared to the

status quo. As shown in Panel A, the share of low-SES students in the top two quintiles of

the score distribution that are placed in elite schools increases by over 20 percentage points.

Conversely, Panel B shows that high-SES students in the top quintile of the score distribution

are 37 percentage points more likely to be assigned to academic (non-elite) programs.

This crowd-in effect for low-SES applicants in elite programs could not be detected in the

small-scale randomized evaluation. Indeed, as reported in the final column of Table 3, the

experimental evidence shows no significant impact of performance feedback on the probability

of assignment to elite schools—underscoring the importance of displacement effects across

applicants in the large-scale counterfactual scenario.
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5.4 Educational Trajectories

To assess the impact of the system-wide reallocation induced by the information intervention

on educational outcomes, we use the predicted effects from the value-added model presented

in Section 4 (see Appendix Table B.10 for the full set of results). The model estimates

indicate that attending an elite school has a sizable negative effect on the likelihood of

completing upper secondary education. Panel A of Figure 7 illustrates that, under the infor-

mation intervention, high-SES students who shift from elite to academic (non-elite) schools

experience substantial gains in school completion—up to 10 percentage points, depending

on their admission score.

In contrast, the crowd-in of low-SES students into elite schools—documented under the

feedback scenario—results in worse graduation outcomes for this group. This effect is espe-

cially pronounced among high-achieving low-SES applicants, whose probability of graduating

on time decreases by 4 to 7 percentage points. These findings demonstrate that the displace-

ment effect induced by the large-scale implementation of the information intervention would

largely offset the positive impact uncovered in the randomized experiment on educational

outcomes, as discussed in Section 3.4.

To replicate the conditions of the experimental setting, we simulate both school as-

signment and educational outcomes under a counterfactual scenario in which performance

feedback is provided exclusively to very low-SES applicants—who constitute 18 percent of

the 2014 applicant cohort. Panel B of Figure 7 displays the resulting effects on graduation

rates. As anticipated, the limited scope of the intervention yields impacts that are concen-

trated among the targeted low-SES students, with negligible spillover effects on the broader

applicant pool. Consistent with the experimental results reported in Table 4, the simulation

reveals a modest but positive effect on graduation rates for low-achieving students within

the targeted group.

6 Conclusion

We leverage a randomized experiment in Mexico City to examine the small and large scale

effects of providing performance information in a centralized high school assignment system.

The intervention offered a subset of applicants timely feedback based on a mock version

of the standardized admission exam used for school placement. Compared to the control

group, students who received this feedback were matched to schools better aligned with

their abilities, leading to improved educational outcomes three years later. While the long-
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Figure 7: The Effect of Providing Performance Feedback on High-School Graduation (Per-
centage Points)
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Note: This figure shows the percentage changes, by discrete categories of socio-economic status (Y-axis) and the score in the
admission exam (x-axis), between the Information Policy and the Status Quo scenarios in the shares of applicants who complete
the on time the high-school program of their assignment in the centralized system.

term effects remain an open question for future research, the findings point to a positive

impact of the information intervention on student outcomes.

In order to explore the broader implementation of the policy targeting a larger and more

diverse population of students, we incorporate the experimental variation into a flexible

school choice model. The model is validated by comparing its out-of-sample predictions—

based on estimated preferences from the control group—to the observed allocation outcomes

for the full population of assigned applicants. We then link the out-of-sample predictions

about the student-school allocations to downstream educational outcomes through a school

value added model, which we estimate using the realized sorting patterns for the universe of

the applicants in the assignment system. The school choice responses predicted by the model

under the scaled-up intervention reveal significant heterogeneity across the applicant pool.

In equilibrium, these responses generate a displacement effect within the assignment system

that would essentially dampen the positive impacts on educational outcomes observed in the

randomized experiment.

Our findings potentially contribute a novel perspective on the role of information provi-

sion in centralized education markets. Providing students with more accurate information

about their academic skills improves the ex-ante efficiency of the student-school allocation.

However, the distributional consequences are considerably more complex. In our setting, they

hinge critically on the direction and magnitude of congestion externalities across applicants.
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Although low-cost informational policies can enhance decision-making and system-level ef-

ficiency, their design must be carefully tailored to account for equilibrium responses and

potential unintended consequences. In particular, targeting feedback to specific subpopu-

lations and combining it with complementary support mechanisms may help ensure that

equity and efficiency gains are preserved at scale.
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Appendices

A Experimental Instructions

We collect rich survey data with detailed information on the subjective distribution of beliefs
about performance in the admission exam. In order to help students understand probabilistic
concepts, we explicitly linked the number of beans placed in a cup to a probability measure,
where zero beans means that the student assigns zero probability to a given event and 20
beans means that the student believes the event will occur with certainty. Students were
provided with a card divided into six discrete intervals of the score. Surveyors then elicited
students’ expected performance in the test by asking them to allocate the 20 beans across
the intervals so as to represent the chances of scoring in each bin.

We include a set of practice questions before eliciting beliefs (authors’ translation from
Spanish):

1. How sure are you that you are going to see one or more movies tomorrow?

2. How sure are you that you are going to see one or more movies in the next two weeks?

3. How sure are you that you are going to travel to Africa next month?

4. How sure are you that you are going to eat at least one tortilla next week?

If respondents grasp the intuition behind our approach, they should provide an answer
for question 2 that is larger than or equal to the answer in question 1, since the latter event
is nested in the former. Similarly, respondents should report fewer beans in question 3 (close
to zero probability event) than in question 4 (close to one probability event). Whenever
students made mistakes, the surveyor repeated the explanation as many times as necessary
before moving forward. We are confident that the elicitation of beliefs has worked well since
only 11 students (0.3%) ended up making mistakes in these practice questions. The survey
question eliciting beliefs reads as follows (authors’ translation from Spanish):

“Suppose that you were to take the COMIPEMS exam today, which has a max-
imum possible score of 128 and a minimum possible score of zero. How sure are
you that your score would be between ... and ...”

During the pilot activities, we tested different versions with more or less discrete cate-
gories and/or more or fewer beans in order to assess the trade-off between coarseness of the
grid and students’ ability to distribute beans across all intervals. We settled for six inter-
vals with 20 beans as students were at ease with that format. Only 6% of the respondents
concentrate all beans in one interval, which suggests that the grid was too coarse only for a
few applicants. The resulting individual ability distributions seem well-behaved: using the
20 observations (i.e., beans) per student, we run a normality test (Shapiro and Wilk, 1965)
and reject it for only 11.4% of the respondents.
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The delivery of individual scores takes place at the beginning of the follow up survey.
Surveyors show the student a personalized graph with two pre-printed bars: the average
score among the universe of applicants during the 2013 round and the average mock exam
score of his classmates. During the delivery, the surveyors plotted a third bar corresponding
to the individual’s score in the mock test. Figure A.1 depicts a sample of the sheets used to
deliver information to the students in the experiment.

Figure A.1: Sample of the Performance Delivery Sheet
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B Additional Figures and Tables

Figure B.1: Average Skipping Patterns in the Mock Exam
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Note: The x-axis orders the 128 questions of the exam in order of appearance. Different colors are used to group together
questions from the same section in the exam. Questions in red are the ones excluded from grading since the school curriculum
did not cover those subjects by the time of the application of the mock exam.
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Figure B.2: Correlates of the Mock Exam Score
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(a) Admission Exam Score

-2
-1

0
1

2
3

G
PA

 (s
ta

nd
ar

di
ze

d)

-2 -1 0 1 2 3
Mock Exam Score (standardized)

bandwidth = .8

Lowess smoother

(b) Middle-school GPA

Note: This figure depicts scatter plots of the bi-variate relationship between the mock exam score and the admission exam
score (Panel A), as well as between the mock exam score and the (standardized) Grade Point Average in middle school (Panel
B). Overlaid on the scatters, we show non-parametric locally weighted estimates of the same relationships.

Figure B.3: On-time Graduation and Academic Performance
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Note: This plot depicts non-parametric locally weighted estimates of the relationship between the graduation on time and the
achievement index, which is a GLS-weighted average (Anderson, 2008) of middle school GPA, mock exam score, and exam score.
“On-Time Graduation” denotes an indicator variable that is equal to one if the student successfully completes the assigned
high school program in three years after placement in the centralized system, and zero otherwise.
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Figure B.4: Model Fit on Schools’ Cutoff Scores for All Schools

0
20

40
60

80
10

0
12

0
Si

m
ul

at
ed

 C
ut

of
fs

0 20 40 60 80 100 120
Observed Cutoffs (Assignment 2014)

Academic Elite Non-Academic

Note: The observed cutoffs are computed from the data of the assignment mechanism in the year 2014 (see Section 2). The
simulated cutoff scores displayed in the scatter plot are computed by running the Serial Dictatorship algorithm that is in place
for the COMIPEMS system using the extrapolated school valuations from the experimental control group, the individual scores
in the admission exam, and the school capacities as inputs.

Figure B.5: The Effect of Providing Performance Feedback on Cutoff Scores
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Note: The simulated cutoff scores are computed by running the Serial Dictatorship algorithm that is in place for the
COMIPEMS system using the predicted school valuations based on the control group (red bars) and the treatment group
(grey bars). The corresponding estimates of the school choice model (2) are reported in Table B.9 in the Appendix. The central
lines within each box denote the sample medians, whereas the upper and lower level contours of the boxes denote the 75th and
25th percentiles, respectively. The whiskers outside of the boxes denote the upper and lower adjacent values, which are values
in the data that are furthest away from the median on either side of the box, but are still within a distance of 1.5 times the
interquartile range from the nearest end of the box (i.e., the nearer quartile).
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Table B.1: Performance in the Mock or Admission Exam and On-time Graduation

Control Group Control Group All Applicants

Mock exam score (standardized) 0.072
[0.001]

Admission exam score (standardized) 0.055 0.061
[0.009] [0.001]

Mean Dependent Variable 0.447 0.447 0.407
Number of Observations 1130 1207 195824
R-squared 0.019 0.011 0.015

Note: This Table shows OLS estimates of the relationship between the individual scores in the mock test or the admission
exam and an indicator variable of whether students have completed upper secondary education in the statutory three years
since enrollment in 10th grade. p-values reported in brackets refer to the conventional asymptotic standard errors, which take
into account the clustering of the error terms at the high school level.

Table B.2: Treatment Effects on Application Outcomes

Participates Exam Length Max cutoff Min cutoff
COMIPEMS Score of ROL in ROL in ROL

Treatment 0.000 -0.669 0.126 1.641 -0.366
[0.987] [0.348] [0.564] [0.247] [0.637]
{0.983} {0.908} {0.982} {0.777} {0.982}

Achievement index 0.023 16.147 0.079 4.019 4.368
[0.000] [0.000] [0.475] [0.000] [0.000]
{0.001} {0.001} {0.978} {0.001} {0.001}

Treatment × Achievement index -0.002 0.223 -0.108 0.262 0.483
[0.777] [0.582] [0.489] [0.757] [0.510]
{0.982} {0.982} {0.978} {0.982} {0.978}

Mean Control 0.881 65.541 9.465 90.491 35.022
Number of Observations 3160 2493 2493 2493 2493
Number of Clusters 90 90 90 90 90
R-squared 0.609 0.735 0.032 0.266 0.243

Note: Standard errors clustered at the middle school level. All specifications include a set of dummy variables which cor-
responds to the randomization strata, pre-determined characteristics (sex, characteristics of the school of origin, previous
experience with practice exams providing feedback, aspirations to attend college, an index of personality traits, an index of
parental characteristics, and a household asset index), and indicator variables for whether each of the covariates has missing
data. Sample in column 1 includes all students in the survey records. Sample in columns 2-5 consists of placed applicants.
The achievement index is a GLS-weighted average (Anderson, 2008) of the GPA in middle school, mock exam score, and exam
score. p-values reported in brackets refer to the conventional asymptotic standard errors while those reported in curly brackets
are adjusted for testing each null hypothesis across multiple outcomes through the step-wise procedure described in Romano
and Wolf (2005a,b, 2016). Both inference procedures take into account clustering of the error terms at the middle school level
and the block randomization design.
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Table B.3: Summary Statistics and Randomization Check

Control Group Treatment Group Treatment-Control

Mock exam score 60.540 62.366 1.496
(15.416) (16.290) [0.163]

Exam score 65.541 65.248 -0.169
(19.516) (19.284) [0.893]

GPA (middle school) 8.116 8.122 -0.013
(0.846) (0.846) ([0.777]

Scholarship in MS 0.106 0.115 0.007
(0.308) (0.319) [0.642]

Grade retention in MS 0.263 0.233 -0.026
(0.440) (0.423) [0.294]

Does not skip classes 0.971 0.971 -0.001
(0.169) (0.169) [0.944]

Plans to go to college 0.670 0.671 -0.003
(0.470) (0.470) [0.903]

Male 0.444 0.461 0.016
(0.497) (0.499) [0.427]

Disabled student 0.142 0.148 0.006
(0.349) (0.355) [0.719]

Indigenous student 0.085 0.101 0.017
(0.278) (0.302) [0.219]

Does not give up 0.878 0.889 0.015
(0.327) (0.315) [0.279]

Tries his best 0.735 0.722 -0.016
(0.442) (0.448) [0.462]

Finishes what he starts 0.720 0.712 -0.015
(0.449) (0.453) [0.442]

Works hard 0.725 0.739 0.010
(0.447) (0.439) [0.644]

Experienced bullying 0.142 0.152 0.010
(0.349) (0.359) [0.429]

Parental background and supervision 0.032 0.058 0.011
(0.786) (0.760) [0.751]

High SES (asset index) 0.463 0.480 0.015
(0.499) (0.500) [0.573]

Took prep courses 0.488 0.467 -0.026
(0.500) (0.499) [0.314]

Exam Preparation 0.421 0.443 0.027
(0.494) (0.497) [0.405]

Previous mock exam 0.269 0.290 0.017
(0.444) (0.454) [0.649]

Previous mock exam with feedback 0.133 0.166 0.028
(0.340) (0.372) [0.408]

Observations 1,290 1,203 2,493

Note: The first two columns report means and standard deviations (in parenthesis). The last column displays the OLS
coefficients of the treatment dummy along with the p-values (in brackets) for the null hypothesis of zero effect.
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Table B.4: On-time and Delayed Graduation Rates (Percentage Points)

On-time Graduation 1-year delayed 2-year delayed 3-year delayed

Elite 47.0 54.6 58.4 60.8

Academic 37.6 44.2 47.4 49.6

Non-Academic 38.6 44.9 48.5 50.8

All 39.2 45.7 49.2 51.5

Note: The columns show graduation rates for each school track from 3 to 6 years after admission for the cohort of applicants
in the 2007 round of the assignment mechanism. The statutory high-school duration in Mexico is three years. We do not
condition on a student graduating from the assigned track to calculate these graduation rates.

Table B.5: Performance Feedback and Admission Outcomes

Placed in Placed Ranking of
1st Round Any placement school

Treatment -0.004 -0.006 0.141
[0.796] [0.719] [0.411]
{0.963} {0.961} {0.804}

Achievement index 0.068 0.064 -0.690
[0.000] [0.000] [0.000]
{0.001} {0.001} {0.001}

Treatment × Achievement index -0.007 -0.005 -0.000
[0.647] [0.751] [1.000]
{0.934} {0.963} {1.000}

Mean Control 0.857 0.884 3.692
Number of Observations 2824 2824 2493
Number of Clusters 90 90 90
R-squared 0.068 0.080 0.085

Note: Standard errors clustered at the middle school level. All specifications include a set of dummy variables which cor-
responds to the randomization strata, pre-determined characteristics (sex, characteristics of the school of origin, previous
experience with practice exams providing feedback, aspirations to attend college, an index of personality traits, an index of
parental characteristics, and a household asset index), and indicator variables for whether each of the covariates has missing
data. Sample in columns columns 2-3 include all students who are matched in the administrative records of the COMIPEMS
exam. Sample in column 3 consists of placed applicants. The achievement index is a GLS-weighted average (Anderson, 2008) of
the GPA in middle school, mock exam score, and exam score. p-values reported in brackets refer to the conventional asymptotic
standard errors while those reported in curly brackets are adjusted for testing each null hypothesis across multiple outcomes
through the step-wise procedure described in Romano and Wolf (2005a,b, 2016). Both inference procedures take into account
clustering of the error terms at the middle school level and the block randomization design.
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Table B.6: Performance Feedback and School Rankings

Non-Academic Academic Elite

Treatment 0.001 -0.001 -0.000
[0.936] [0.928] [0.999]
{0.997} {0.997} {0.998}

Achievement index -0.031 -0.054 0.084
[0.002] [0.000] [0.000]
{0.003} {0.001} {0.001}

Treatment × Achievement index -0.032 0.030 0.002
[0.011] [0.008] [0.894]
{0.015} {0.013} {0.997}

Mean Control 0.365 0.336 0.299
Number of Observations 2493 2493 2493
Number of Clusters 90 90 90
R-squared 0.154 0.129 0.266

Note: The dependent variable is the share of high school programs in the school rankings submitted
by each applicant that belong to a given group of schools (i.e., Non-Academic, Academic, and Elite
schools). The achievement index is a GLS-weighted average (Anderson, 2008) of the GPA in middle
school, mock exam score, and exam score. p-values reported in brackets refer to the conventional
asymptotic standard errors, while those reported in curly brackets are adjusted for testing each null
hypothesis across multiple outcomes through the step-wise procedure, as described in Romano and
Wolf (2005a,b, 2016). Both inference procedures take into account the clustering of the error terms at
the middle school level.

Table B.7: Lee Bounds for the Effect of the Performance Feedback on Graduation on Time

All Sample Mock Score ≤ Median Mock Score > Median
Lower Upper Lower Upper Lower Upper

Lee Bounds 0.016 0.039 0.041 0.063 -0.016 0.009
[0.504] [0.088] [0.137] [0.02] [1.547] [0.806]

Number of Observations 2493 1171 1322
% Observations Trimmed 0.022 0.025 0.022

Note: This table reports Lee bounds (Lee, 2009) in order to account for potentially non-random sample selection in
the indicator variable for whether or not students graduate from secondary education three years post-assignment. The
column ‘Below Median’ considers the sub-sample of applicants with a value of the achievement index below the median
in the sample. The column ‘Above Median’ considers the sub-sample of applicants with a value of the achievement index
above the median in the sample. p-values reported in brackets refer to the conventional asymptotic standard errors.
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Table B.8: Treatment Effects on High-School Graduation Adjusted for Skills and Preferences

Preferences Placement

Treatment 0.001 0.001
[0.906] [0.939]
{0.970} {0.970}

Achievement index -0.013 -0.016
[0.000] [0.000]
{0.001} {0.001}

Treatment × Achievement index 0.005 0.009
[0.101] [0.115]
{0.164} {0.164}

Mean Control 0.417 0.428
Number of Observations 2484 2236
Number of Clusters 90 90
R-squared 0.413 0.217

Note: The dependent variable “Preferences” is the estimated average graduation rate for the school programs in the students’
school rankings, as predicted by the value added model (3). Analogously, the dependent variable “Placement” is the estimated
graduation rate of the assigned school. Data for UNAM-sponsored high school programs is not available, hence the discrepancy
in the number of observations in both columns when compared to the Tables in the main text (N=2,493). The achievement
index is a GLS-weighted average (Anderson, 2008) of the GPA in middle school, mock exam score, and exam score. p-values
reported in brackets refer to the conventional asymptotic standard errors, while those reported in curly brackets are adjusted
for testing each null hypothesis across multiple outcomes through the step-wise procedure, as described in Romano and Wolf
(2005a,b, 2016). Both inference procedures take into account the clustering of the error terms at the middle school level.
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Table B.9: Estimates of the School Choice Model

Control Sample Treatment Sample

Cole1-Aca 2.306 -0.0909
(0.000) (0.882)

Cole2-NonAca -0.447 -1.901
(0.453) (0.002)

Cole3-Aca 2.143 -2.597
(0.292) (0.340)

Cole4-NonAca 1.499 -13.12
(0.189) (0.997)

Cole5-NonAca 2.160 0.999
(0.002) (0.182)

Cole6-NonAca 1.572 -0.345
(0.001) (0.540)

Cole7-Elite 3.124 0.101
(0.000) (0.923)

Cole8-Elite 10.47 -0.209
(0.047) (0.943)

Cole9-nonAca 0.274 -0.415
(0.580) (0.520)

Cole10-NonAca -0.183 -1.621
(0.768) (0.029)

Cole11-Aca 1.246 -0.694
(0.026) (0.333)

Cole12-NonAca -0.237 -0.657
(0.629) (0.261)

Cole13-Aca 0.741 0.397
(0.075) (0.438)

Cole14-Aca -13.09 -2.049
(0.998) (0.761)

Cole15-Elite 4.380 -0.222
(0.000) (0.843)

Cole16-Elite 3.511 -2.062
(0.006) (0.178)

Cole1-Aca×Mock Score -0.122 -0.401
(0.565) (0.063)

Cole2-NonAca×Mock Score 0.269 0.0496
(0.249) (0.817)

Cole3-Aca×Mock Score 0.338 -0.268
(0.637) (0.821)

Cole4-NonAca×Mock Score 0.154 0.511
(0.714) (1.000)

Continued on next page
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Table B.9 Estimates of the School Choice Model – Continued from Previous Page

Control Sample Treatment Sample
Cole5-NonAca×Mock Score 0.595 -0.459

(0.067) (0.090)
Cole6-NonAca×Mock Score 0.261 -0.0889

(0.199) (0.660)
Cole7-Elite×Mock Score -0.232 -0.862

(0.533) (0.024)
Cole8-Elite×Mock Score -1.732 -0.938

(0.060) (0.321)
Cole9-nonAca×Mock Score 0.267 -0.745

(0.204) (0.002)
Cole10-NonAca×Mock Score 0.271 -0.628

(0.267) (0.006)
Cole11-Aca×Mock Score 0.167 -0.309

(0.471) (0.183)
Cole12-NonAca×Mock Score 0.194 -0.352

(0.362) (0.080)
Cole13-Aca×Mock Score 0.122 -0.487

(0.502) (0.006)
Cole14-Aca×Mock Score 0.788 0.716

(1.000) (0.755)
Cole15-Elite×Mock Score -0.0397 -0.609

(0.925) (0.126)
Cole16-Elite×Mock Score -0.181 -0.558

(0.716) (0.317)
Cole1-Aca×GPA -0.453 -0.366

(0.011) (0.053)
Cole2-NonAca×GPA -0.396 -0.515

(0.049) (0.010)
Cole3-Aca×GPA 0.0169 -0.248

(0.976) (0.765)
Cole4-NonAca×GPA -0.508 0.0465

(0.166) (1.000)
Cole5-NonAca×GPA -0.663 -0.187

(0.018) (0.450)
Cole6-NonAca×GPA -0.516 -0.760

(0.003) (0.000)
Cole7-Elite×GPA -0.337 -0.549

(0.238) (0.079)
Cole8-Elite×GPA -0.445 -0.843

(0.527) (0.246)
Cole9-nonAca×GPA -0.143 -0.195

Continued on next page
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Table B.9 Estimates of the School Choice Model – Continued from Previous Page

Control Sample Treatment Sample
(0.437) (0.338)

Cole10-NonAca×GPA -0.745 -0.200
(0.001) (0.351)

Cole11-Aca×GPA -0.312 -0.103
(0.102) (0.619)

Cole12-NonAca×GPA -0.528 -0.367
(0.002) (0.043)

Cole13-Aca×GPA -0.446 -0.175
(0.004) (0.282)

Cole14-Aca×GPA -0.329 0.311
(1.000) (0.840)

Cole15-Elite×GPA -0.261 0.0693
(0.408) (0.836)

Cole16-Elite×GPA -0.187 0.491
(0.630) (0.318)

Cole1-Aca×SES Index -0.0335 -1.163
(0.913) (0.003)

Cole2-NonAca×SES Index -0.431 -1.181
(0.224) (0.003)

Cole3-Aca×SES Index 0.350 -2.105
(0.802) (0.270)

Cole4-NonAca×SES Index -0.665 -0.122
(0.206) (1.000)

Cole5-NonAca×SES Index 0.506 -0.103
(0.202) (0.815)

Cole6-NonAca×SES Index -0.184 -0.976
(0.517) (0.006)

Cole7-Elite×SES Index -0.522 -2.060
(0.297) (0.000)

Cole8-Elite×SES Index 4.464 -1.837
(0.314) (0.225)

Cole9-nonAca×SES Index 0.406 0.307
(0.181) (0.448)

Cole10-NonAca×SES Index -0.119 -0.824
(0.732) (0.054)

Cole11-Aca×SES Index 0.0254 -0.936
(0.937) (0.029)

Cole12-NonAca×SES Index -0.238 -0.268
(0.404) (0.459)

Cole13-Aca×SES Index 0.215 0.271
(0.390) (0.388)

Continued on next page
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Table B.9 Estimates of the School Choice Model – Continued from Previous Page

Control Sample Treatment Sample
Cole14-Aca×SES Index -0.249 -0.500

(1.000) (0.872)
Cole15-Elite×SES Index -0.0760 -2.415

(0.900) (0.000)
Cole16-Elite×SES Index -0.226 -2.522

(0.747) (0.002)
Cole1-Aca×Middle-School Math Score 0.155 -0.0929

(0.495) (0.724)
Cole2-NonAca×Middle-School Math Score 0.415 -0.330

(0.088) (0.198)
Cole3-Aca×Middle-School Math Score 0.403 -0.375

(0.587) (0.769)
Cole4-NonAca×Middle-School Math Score 0.176 0.357

(0.750) (1.000)
Cole5-NonAca×Middle-School Math Score -0.418 0.544

(0.308) (0.081)
Cole6-NonAca×Middle-School Math Score 0.113 0.170

(0.604) (0.472)
Cole7-Elite×Middle-School Math Score -0.168 -0.838

(0.650) (0.045)
Cole8-Elite×Middle-School Math Score 0.492 1.222

(0.709) (0.254)
Cole9-nonAca×Middle-School Math Score 0.0751 0.460

(0.750) (0.106)
Cole10-NonAca×Middle-School Math Score 0.728 0.296

(0.017) (0.290)
Cole11-Aca×Middle-School Math Score 0.234 -0.255

(0.348) (0.412)
Cole12-NonAca×Middle-School Math Score 0.122 -0.188

(0.616) (0.489)
Cole13-Aca×Middle-School Math Score 0.0217 0.589

(0.910) (0.008)
Cole14-Aca×Middle-School Math Score 0.408 1.953

(1.000) (0.332)
Cole15-Elite×Middle-School Math Score 0.810 -0.390

(0.049) (0.343)
Cole16-Elite×Middle-School Math Score 0.415 -0.157

(0.390) (0.780)
Cole1-Aca×Parent Higher Education -0.508 0.209

(0.247) (0.682)
Cole2-NonAca×Parent Higher Education -0.409 -0.0186

Continued on next page
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Table B.9 Estimates of the School Choice Model – Continued from Previous Page

Control Sample Treatment Sample
(0.408) (0.972)

Cole3-Aca×Parent Higher Education -0.948 -13.59
(0.451) (0.994)

Cole4-NonAca×Parent Higher Education -0.636 0.606
(0.573) (1.000)

Cole5-NonAca×Parent Higher Education -1.391 0.329
(0.121) (0.595)

Cole6-NonAca×Parent Higher Education -0.829 0.0533
(0.066) (0.910)

Cole7-Elite×Parent Higher Education -1.399 0.741
(0.032) (0.296)

Cole8-Elite×Parent Higher Education -15.81 -13.96
(0.991) (0.988)

Cole9-nonAca×Parent Higher Education -0.915 -0.658
(0.088) (0.302)

Cole10-NonAca×Parent Higher Education -1.268 -0.191
(0.039) (0.747)

Cole11-Aca×Parent Higher Education -0.453 -0.283
(0.421) (0.661)

Cole12-NonAca×Parent Higher Education -0.910 0.0912
(0.118) (0.852)

Cole13-Aca×Parent Higher Education -0.506 0.177
(0.223) (0.677)

Cole14-Aca×Parent Higher Education -0.627 -13.84
(1.000) (0.994)

Cole15-Elite×Parent Higher Education -2.705 1.004
(0.000) (0.165)

Cole16-Elite×Parent Higher Education -1.668 1.256
(0.044) (0.171)

Distance (Km) -0.271 -0.202
(0.000) (0.000)

Distance (Km)×Mock Score 0.0144 0.0169
(0.046) (0.023)

Distance (Km)×GPA 0.00383 0.00763
(0.585) (0.312)

Distance (Km)×SES Index 0.000575 0.0457
(0.961) (0.003)

Distance (Km)×Middle-School Math Score 0.0185 0.0215
(0.035) (0.033)

Distance (Km)×Parent Higher Education 0.0239 0.00427
(0.142) (0.808)

Continued on next page
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Table B.9 Estimates of the School Choice Model – Continued from Previous Page

Control Sample Treatment Sample
Cutoff Score 1.063 1.510

(0.000) (0.000)
Cutoff Score×Mock Score 0.103 0.170

(0.151) (0.019)
Cutoff Score×GPA 0.126 0.154

(0.052) (0.023)
Cutoff Score×SES Index 0.0763 0.227

(0.470) (0.073)
Cutoff Score×Middle-School Math Score 0.110 0.262

(0.212) (0.002)
Cutoff Score×Parent Higher Education 0.519 -0.0602

(0.003) (0.727)
N 637,901 590,526

Note: This table displays the full set of maximum-likelihood estimates and standard errors (in parenthesis) for the parameters
of the school choice model (2).

Table B.10: Estimates of the School Graduation Model

On-time graduation
Cole2-NonAca -0.174

(0.023)
Cole3-Aca 0.056

(0.052)
Cole4-NonAca -0.028

(0.201)
Cole5-NonAca 0.095

(0.030)
Cole6-NonAca 0.055

(0.017)
Cole7-Elite -0.109

(0.023)
Cole8-Elite -0.050

(0.055)
Cole9-nonAca 0.085

(0.037)
Cole10-NonAca 0.249

(0.035)
Cole11-Aca -0.030

(0.032)
Cole12-NonAca 0.060

(0.028)
Continued on next page
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Table B.10 Estimates of the School Graduation Model – Continued from Previous Page

On-time graduation
Cole13-Aca 0.146

(0.023)
Cole14-Aca 0.130

(0.164)
GPA 0.160

(0.005)
SES index 0.017

(0.006)
Parent Education 0.004

(0.004)
Middle-School Math Score 0.015

(0.004)
Cole2-NonAcaXGPA -0.105

(0.010)
Cole3-AcaXGPA 0.031

(0.022)
Cole4-NonAcaXGPA 0.054

(0.048)
Cole5-NonAcaXGPA 0.045

(0.015)
Cole6-NonAcaXGPA -0.002

(0.008)
Cole7-EliteXGPA 0.054

(0.008)
Cole8-EliteXGPA 0.098

(0.027)
Cole9-nonAcaXGPA -0.015

(0.017)
Cole10-NonAcaXGPA 0.024

(0.015)
Cole11-AcaXGPA -0.006

(0.015)
Cole12-NonAcaXGPA 0.002

(0.011)
Cole13-AcaXGPA -0.008

(0.008)
Cole14-AcaXGPA 0.044

(0.081)
Cole2-NonAcaXSES index -0.006

(0.012)
Cole3-AcaXSES index 0.021

(0.040)
Continued on next page
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On-time graduation
Cole4-NonAcaXSES index -0.045

(0.049)
Cole5-NonAcaXSES index 0.037

(0.019)
Cole6-NonAcaXSES index -0.022

(0.009)
Cole7-EliteXSES index 0.003

(0.010)
Cole8-EliteXSES index 0.014

(0.034)
Cole9-nonAcaXSES index 0.005

(0.019)
Cole10-NonAcaXSES index -0.015

(0.018)
Cole11-AcaXSES index -0.002

(0.016)
Cole12-NonAcaXSES index -0.019

(0.011)
Cole13-AcaXSES index -0.007

(0.009)
Cole14-AcaXSES index 0.111

(0.097)
Cole2-NonAcaXParent Education 0.009

(0.012)
Cole3-AcaXParent Education 0.028

(0.018)
Cole4-NonAcaXParent Education 0.075

(0.059)
Cole5-NonAcaXParent Education 0.009

(0.017)
Cole6-NonAcaXParent Education 0.010

(0.008)
Cole7-EliteXParent Education 0.009

(0.006)
Cole8-EliteXParent Education 0.034

(0.018)
Cole9-nonAcaXParent Education 0.016

(0.020)
Cole10-NonAcaXParent Education 0.000

(0.019)
Cole11-AcaXParent Education 0.019

(0.020)
Continued on next page
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On-time graduation
Cole12-NonAcaXParent Education -0.008

(0.016)
Cole13-AcaXParent Education 0.002

(0.007)
Cole14-AcaXParent Education 0.008

(0.043)
Cole2-NonAcaXMiddle-School Math Score -0.021

(0.008)
Cole3-AcaXMiddle-School Math Score 0.024

(0.019)
Cole4-NonAcaXMiddle-School Math Score -0.004

(0.058)
Cole5-NonAcaXMiddle-School Math Score 0.052

(0.020)
Cole6-NonAcaXMiddle-School Math Score 0.017

(0.007)
Cole7-EliteXMiddle-School Math Score 0.004

(0.007)
Cole8-EliteXMiddle-School Math Score 0.006

(0.024)
Cole9-nonAcaXMiddle-School Math Score 0.027

(0.020)
Cole10-NonAcaXMiddle-School Math Score 0.047

(0.020)
Cole11-AcaXMiddle-School Math Score 0.064

(0.020)
Cole12-NonAcaXMiddle-School Math Score 0.055

(0.013)
Cole13-AcaXMiddle-School Math Score 0.016

(0.008)
Cole14-AcaXMiddle-School Math Score -0.194

(0.115)
School-Average GPA 0.024

(0.010)
School-Average SES index -0.021

(0.011)
School-Average Parent Education -0.011

(0.012)
School-Average Middle-School Math Score 0.000

(0.012)
Constant 0.378

Continued on next page
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On-time graduation
(0.012)

N 182,824

Note: This table displays the full set of OLS estimates and standard errors (in parenthesis) of the parameters of the school
effectiveness model (3). The ROL fixed effects are included in the regression but they are not reported. The sample includes
all the assigned applicants to the centralized system in the year 2010 except for the 15% of applicants who are assigned to
the UNAM-sponsored high-schools (2 colleges out of 16 participating colleges).
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