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Abstract

This paper studies the effects of combining skill measures to construct the priority

order of a centralized education market. We use data from Mexico City, where seat

rationing relies solely on a one-shot exam score. We first show that admission to the

most over-subscribed schools decreases graduation for marginally admitted students,

but this effect is heterogeneous. It is decreasing in the one-shot exam for inframarginal

students. It is negative for marginal students with low GPAs and boys but null for

marginal students with high GPAs and girls. We then use a model of school choice

and graduation that allows for match effects to study the equity and efficiency of

counterfactual priority orders that combine the one-shot exam score and GPA with

different weights. The larger the weight on GPA, the larger the share of girls and

low-SES students that get access to the most over-subscribed schools. However, using

roughly equal weight on both skill measures maximizes girls’ and low-SES students’

graduation rates at these schools.
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1 Introduction

In all centralized education systems some schools experience excess demand. Consequently,

centralized systems need a way to ration the available seats [Shi, 2022]. Since using prices as

a rationing mechanism is not feasible for K-12 public schools, policymakers define priority or-

ders that solve the excess demand problem by determining who gets access to over-subscribed

schools.1

Many centralized systems use a one-shot exam score as their priority order.2 Understand-

ing the consequences of this practice is important for several reasons. First, performance on

a one-shot exam may be a noisy or incomplete measure of academic preparation. This could

lead to a mismatch between students’ preparation and some schools’ academic requirements,

affecting educational outcomes. Second, subpopulations with the same academic preparation

may perform differently on a one-shot exam. This could lead to unequal access to highly de-

manded schools among well prepared students. For example, women and low-SES students

tend to perform worse on one-shot exams than men or high-SES students but have otherwise

similar (or better) preparation under alternate measures [Azmat et al., 2016; Arenas et al.,

2021].

In this paper, we explore the equity and efficiency implications of a priority order by

studying the centralized high school admission system in Mexico City. In this system, stu-

dents’ priority order is solely based on their scores in a one-shot admission exam. We study

the following question: Can combining the one-shot exam with middle school GPA improve

equity of access without adversely affecting graduation rates? We focus on GPA as a poten-

tial channel to improve student-school matches because previous literature shows that grades

measure non-cognitive skills (e.g., conscientiousness) to a higher degree than one-shot ex-

ams do and that non-cognitive skills are important determinants of desirable educational

outcomes [Stinebrickner and Stinebrickner, 2006; Duckworth et al., 2012; Borghans et al.,

2016; Jackson, 2018]. However, as grades may have their own biases [Lavy, 2008; Hanna and

1Typical components of priority orders are siblings, residential zones, lotteries, standardized exams, and
GPAs.

2For example, the centralized systems in Romania, Kenya, Trinidad and Tobago, Ghana, Barbados, and
Mexico City use one-shot exams. In the US, selective schools in NYC rely solely on a standardized exam.
In contrast, selective schools in Chicago and Boston combine standardized exams and GPA.
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Linden, 2012; Lavy and Sand, 2018], we consider policies that combine standardized skill

measures with non-standardized skill measures.

We use participants’ administrative records from the centralized high school admission

process in Mexico City. We complement these data with official high school graduation

records (i.e., three to five years after admission) for students assigned to a school through

the centralized process. For students not assigned and those who re-apply or transfer to

other public or private schools, we use participation in a high school exit exam as a proxy

for graduation. This unique dataset features two advantages for the analysis. First, it has

information on the application and graduation of more than 250,000 students, allowing us

to explore rich heterogeneity without losing much precision. Second, our dataset includes

applicants’ skill measures beyond the admission exam score, including their middle school

GPAs and scores on a standardized exam used for school accountability.

We first shed light on the importance of the skills captured by the admission exam

score and GPA and their influence on students’ probability of graduation when admitted

to the most over-subscribed schools in the system (i.e., elite schools). Using a regression

discontinuity design (RDD), we show that for marginally admitted students elite schools

decrease the probability of graduation by six percentage points. However, this effect is

heterogeneous. Using the extrapolation method proposed by Angrist and Rokkanen [2015],

we show that for inframarginal students the effect on graduation is monotonically decreasing

on the admission score.3

In addition, students at the margin of admission to an elite school are heterogeneous with

respect to their middle school GPAs. The correlation between the admission exam score and

middle school GPA is 0.4. To study heterogeneity by GPA, we estimate effects separately

for students with above- and below-median GPAs. We find that marginal admission to an

elite school decreases the probability of graduation by twelve percentage points for students

with low GPAs. For students with high GPAs, marginal admission to an elite school does

not affect their probability of graduation. Notably, high and low GPA students experience a

similar jump in peer quality when marginally admitted to elite schools, yet they experience

3Angrist and Rokkanen [2015] method to extrapolate treatment effects for inframarginal applicants in
an RDD exploits the information in additional covariates and relies on a unconfoundedness condition.
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considerably different outcomes.

We also estimate effects separately for boys and girls and find heterogeneous effects by

gender. We find that boys experience a decrease in their graduation probability (ten per-

centage points), while girls are unaffected. This is consistent with previous findings showing

that selective schools affect the educational attainment of boys and girls differently [Jackson,

2010; Clark, 2010; Deming et al., 2014]. We further show that a potential explanation behind

these results is that girls have higher GPAs than boys at all levels of the admission exam

score, including at the elite schools’ admission cutoffs.

Our first set of findings imply that both the admission score and GPA matter for elite

school graduation. Also, an assignment mechanism that relies on a single measure of skills

affects educational outcomes by excluding important information about a student’s academic

potential, such as the information contained in GPA. Importantly, given the pattern of het-

erogeneous results by GPA and gender, there is scope for increasing equity without affecting

efficiency (i.e., graduation) by taking additional skill measures into account.

Although policy relevant for certain policy counterfactuals (e.g., small increases in the

number of offered seats), our RDD parameters may not be informative for policies that

change the priority order for two reasons. First, who is affected by a change in the priority

order ultimately depends on the complex interaction between the priority order, students’

preferences, and school capacities. Second, changes in the priority order may lead to place-

ment and displacement effects across all schools in the market (i.e., congestion effects). Thus,

we rely on a model of school choice and graduation to study the effects of counterfactual pri-

ority orders that combine the one-shot admission exam with GPA (or within school ranking

by GPA) using different weights.

We estimate student preferences under the stability of the market equilibrium assumption

[Fack et al., 2019].4 This approach is robust to students potentially deviating from truth-

telling behavior in their rank-ordered lists (ROLs) by omitting schools that they consider

infeasible. For example, a high GPA student that performs poorly on one-shot exams may

4The matching algorithm is the Serial Dictatorship which incentivizes truthful revelation of preferences
[Svensson, 1999]. However, in practice, some students may not reveal their preferences in their rank-ordered
lists as there is a constraint on the number of schools they can list [Haeringer and Klijn, 2009; Calsamiglia
et al., 2010] or due to application mistakes [Artemov et al., 2023; Hassidim et al., 2017].
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omit very selective schools in her ROL if she knows that the priority order gives no weight

to her grades, but change this behavior as the priority order adds weight to GPA. Our

counterfactuals take into consideration student preferences for schools that were infeasible

in the status quo but became feasible under the counterfactual priority orders [Artemov

et al., 2023].

To quantify the effects on graduation across the market, we estimate a graduation value-

added model that allows for match effects and deals with selection on unobservables by

including a control function we derive from the preferences model [Abdulkadiroğlu et al.,

2020; Barahona et al., 2023]. Our model does a good job of fitting the baseline equilibrium

sorting and graduation rates. We then use the model to simulate counterfactual equilibriums

and compare them in terms of equity and efficiency.

There are two important findings from the counterfactual analysis. First, the higher the

weight on GPA, the higher the share of girls and low-SES students assigned to elite schools.

We observe an increase in the share of girls because they have higher GPAs than boys, and

they prefer selective to nonselective schools, so the counterfactuals provide them with greater

access to their preferred schools. We observe an increase in the share of low-SES students

because the admission exam score is highly correlated with family income, whereas GPA

is not. Second, the graduation rate from elite schools has a concave relationship with the

weight on GPA. The concave relationship is a product of both the admission exam score

and GPA being important determinants of graduation, even conditional on each other. For

a central planner who cares about equality of access and the graduation rate of girls and

low-SES at elite schools, optimal weights on the admission exam score and GPA are 40%

and 60%, respectively.5

Our paper contributes to three strands of literature. First, it contributes to the literature

on centralized education systems. Much of the previous literature considers school priorities

as given and studies the consequences of using different matching mechanisms to allocate

students to schools [Pathak, 2011; Agarwal and Somaini, 2020]. Yet, defining a priority

structure is an integral part of the design of a centralized system. Shi [2022] and Abdulka-

diroğlu et al. [2021] are the closest papers to ours. Their focus is on finding optimal priority

5Our findings are robust to alternately using within-school rankings by GPA instead of GPA.
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structures in centralized education systems. We complement their work by also looking at

students’ downstream outcomes, such as graduation rates, which are crucial to assess the

impact of mismatch within an assignment system. As Agarwal et al. [2020] and Larroucau

and Rios [2020] highlights, it is essential to understand how assignment mechanisms perform

when evaluated on outcomes of policymakers’ concern beyond efficiency measures based on

revealed preferences. Also, our counterfactual analysis follows some recent literature showing

the importance of taking into account the congestion effects inherent in centralized markets

when studying large-scale policy changes [Bobba et al., 2023; Larroucau et al., 2024].

Second, we contribute to the extensive literature studying the effects of elite/selective

schools on educational outcomes.6 Dustan et al. [2017] find that marginal admission to a

subset of science schools in Mexico City increases dropout and that this effect is decreasing in

GPA. They exclude from their analysis the most over-subscribed schools in the market, which

are requested as a first choice by more than 50% of students. We complement their work

in three ways. First, we study the effect of admission to the most over-subscribed schools

in the market for marginal and inframarginal students. Second, we explore heterogeneous

results by gender and their connection with the heterogeneity by GPA. Third, we show that

in equilibrium, the pattern of heterogeneous effects by GPA and gender allows for some

policies to increase equity of access without negatively affecting the graduation rate.

Lastly, we contribute to the literature on using one-shot exams and grades in admission

policies. Arenas and Calsamiglia [2022] study the effects of a policy change that increased

the weight on standardized exams relative to high school grades in a university admission

index. The change decreased the share of females at selective degrees and affected the females

who were likely to do better in college than the males who benefited from the change. We

complement their work by showing that over-reliance on a one-shot exam can also affect

academically prepared, low-SES students. Bleemer [2021] shows that a grade-based top-

percent policy for university admission in California promoted economic mobility without

efficiency losses. Borghesan [2022] estimates a model that allows for endogenous responses

by students and universities and finds that banning a standardized exam for university

6See Clark [2010]; Jackson [2010]; Pop-Eleches and Urquiola [2013]; Abdulkadiroğlu et al. [2014]; Dobbie
and Fryer Jr [2014]; Lucas and Mbiti [2014]; Abdulkadiroğlu et al. [2017]; Dustan et al. [2017]; Beuermann
and Jackson [2022]; Angrist et al. [2023].

5



admissions in the US does not improve diversity and affects the graduation rate. Our results

are consistent with these findings to the extent that, as we show, using one skill measure or

another is not better than combining them.

The remainder of the paper proceeds as follows. Section 2 describes the education system

in Mexico City. Section 3 details the administrative data we use for the analysis. Section 4

contains the implementation and results of our RDDs. Section 5 contains the implementation

and results of our counterfactuals. Section 6 concludes.

2 Education in Mexico City

The school system in Mexico has three levels: elementary, middle and high school. Ele-

mentary school is six years long, and middle and high school are three years each. The

centralized high school education system in Mexico City encompasses the Federal District

and 22 nearby urban municipalities in the State of Mexico. Most of the high school admis-

sion process participants are middle school students who reside in Mexico City and are in

their last semester of middle school. Additional participants (less than 25%) attend middle

schools outside of Mexico City, already have a middle school certificate, or are enrolled in

adult education. In total, about 300,000 students participate in the admission system.

Public high schools in Mexico City belong to one of nine subsystems (Table 1). Each

subsystem manages a different number of schools and offers its own curriculum. Two sub-

systems, SUB 1 and SUB 2 in Table 1, enjoy a high reputation, are affiliated with the two

most prestigious public universities in Mexico City, and offer a more advanced curriculum.

For the rest of the paper, we refer to the schools belonging to these subsystems as elite

schools.

The first column of Table 1 shows the number of schools affiliated with each subsystem.

The second column indicates that elite schools offer only 23% of the total number of seats in

the system. The third column shows a high demand for elite schools; 63% of students list an

elite school as their first option. Since elite schools are heavily over-subscribed, admission to

elite schools is very competitive, which leads to these schools having high admission cut-off

scores. We define an admission cut-off as the lowest score obtained by the students assigned
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Table 1: Subsystems in 2007

Number of Schools Seats (%) First in ROL (%) Admission Cut-Off

SUB 1 14 14.1 47.7 86.3
SUB 2 16 8.7 13.9 79.6
SUB 3 1 0.4 0.7 74.0
SUB 4 2 0.9 0.6 60.5
SUB 5 40 16.9 6.4 49.2
SUB 6 215 22.8 16.2 47.0
SUB 7 186 17.6 8.0 44.5
SUB 8 179 18.4 6.3 35.8
SUB 9 5 0.3 0.2 32.4
Total 658 100.0 100.0 45.0

Note: This table shows the aggregate supply, demand, and equilibrium cut-offs for
the high school subsystems in Mexico City. The fourth column shows the average
admission cut-offs of the schools in a given subsystem.

to a given school in the previous admission cycle. The admission exam scores range from

31 to 128 points. The fourth column of Table 1 shows that elite schools’ average admission

cut-offs are the highest in the market.

The timeline of the application process is as follows. In February, students receive an

information booklet describing the steps they need to follow. The information booklet also

lists all available schools, their specializations, addresses, and previous years’ admission

cut-offs. The government also provides a website where students can download additional

information about each school and use a mapping tool to see each school’s location. In

March, students submit a rank-ordered list (ROL) listing up to 20 schools. In June, all

students take a system-wide admission exam. We include a more detailed description of the

admission exam in Appendix A.

All schools prioritize students based on the admission exam score. Elite schools exclude

from consideration students with a middle school GPA lower than 7 out of 10. However,

most of the students meet this requirement. To obtain a middle school certificate, students

must have a GPA of at least 6 out of 10. In 2007, 91 percent of students met the GPA

requirement for elite school admission (Figure 1).

Before implementing the matching algorithm, schools decide the number of seats to offer.

During the matching process, some students may have the same admission exam score and

compete for the last available seats at a given school. In this case, schools either admit or
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Figure 1: Elite schools minimum GPA requirement
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Note: This figure shows the cumulative distribution function of
middle school GPA. The minimum GPA for middle school grad-
uation and participation in the centralized high school admission
system is six. To be considered for admission to an elite school,
students must have a GPA greater or equal to seven (dashed line).

reject all tied students. For example, if a school has ten seats remaining during the matching

process, but 20 tied students compete for them, the school must decide between admitting

all 20 or rejecting them all.

The matching algorithm is the serial dictatorship. The serial dictatorship algorithm ranks

students by the admission exam score and, proceeding in order, matches each applicant to

her most preferred school among the schools with available seats. We provide a more detailed

explanation of the serial dictatorship algorithm in Appendix B.

Some students may be left unmatched at the end of the matching process. There are two

reasons why some students are unmatched. First, some students do not clear the cut-off for

any schools they list in their ROLs. Second, some students only apply to elite schools and

do not meet the minimum GPA requirement. Unmatched students can register at schools

with available seats after the matching process is over.

3 Administrative Data

We use individual-level administrative data from the 2007 high school admission process in

Mexico City. In that year, 256,335 students applied to 658 high schools. We observe each
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Table 2: Students’ characteristics by assignment group

All Elite Non-Elite Unmatched

Exam Score 65.24 90.16 60.27 51.20
(19.21) (10.87) (14.88) (12.80)

GPA 8.03 8.56 7.88 7.89
(0.84) (0.81) (0.80) (0.72)

Female 0.51 0.45 0.51 0.61
(0.50) (0.50) (0.50) (0.49)

Age 15.82 15.56 15.90 15.88
(1.60) (1.23) (1.72) (1.55)

Length of ROL 9.32 9.62 9.53 8.03
(3.75) (3.92) (3.71) (3.41)

Position assigned 3.32 1.94 3.79
(2.94) (1.72) (3.11)

Graduation 0.58 0.71 0.58 0.43
(0.49) (0.45) (0.49) (0.50)

Observations 256,335 54,654 162,063 39,618

Note: This table shows the characteristics of the middle school
students participating in the assignment process. The length of
ROL is the number of schools a student includes in her application
list. The position assigned is where she ends up assigned in the
ranking submitted by a student. Graduation indicates if a student
graduated or not within five years. Standard deviations are in
parenthesis.

student’s admission exam score, ROL, GPA, assigned school, and socio-demographic char-

acteristics, such as gender and parental income. In Table 2, we include descriptive statistics

of the applicant population. Students assigned to elite schools have higher admission exam

scores, higher GPAs, and a larger share of them are male.

On the high school side, we have information on the number of seats each school offers,

the subsystem to which each school belongs, and previous years’ admission cut-offs for each

school. With this information, we use the Serial Dictatorship algorithm and fully replicate

the assignments we observe in the data (Table 3). Being able to reproduce the student-

school matches observed in the data gives us confidence in the transparency of the admission

system.

We define high school graduation as high school completion between 3 to 5 years after

participating in the 2007 admission process. Expected high school duration is three years

for all high schools. To measure graduation, we combine two sources of data. First, we

9



Table 3: Matching outcomes in 2007

N %
Matched 216,717 73.02
Unmatched 39,618 13.35
Subtotal 256,335
Ineligible < 31 in exam 5,841 1.97

No exam 6,353 2.14
No middle school 28,249 9.52

Total 296,778 100

Note: This table shows the results of running the serial
dictatorship algorithm using the administrative data. A
student is ineligible if she obtains a score lower than 31 in
the admission exam, does not show up for the exam, or
does not obtain a middle school degree.

rely on administrative graduation records to measure whether a student graduates from the

assigned subsystem. Second, we use participation in a high school exit exam to measure the

graduation of students who were unmatched during the admission process, switched schools

across subsystems, or moved to the private sector. Combining these two data sources, we

obtain an unconditional measure of high school graduation that splits students into those

who complete any high school and those who are high school dropouts. Appendix C includes

a more detailed description of how we construct the graduation variable.

In Table 2, we show that the system-wide graduation rate is 58%, and students assigned

to elite schools have a thirteen percentage points higher average graduation rate than those

assigned to non-elite schools. This difference likely reflects the selection of more skilled

students into elite schools. Not all unmatched students become high school dropouts, 43%

of them finish high school within the next five years. Unmatched students can still complete

high school by re-applying the following year or attending private schools.

In addition to the admission and graduation information, we observe students’ scores on

a standardized, low-stakes exam that they take during the last semester of middle school.

The exam evaluates students in two subjects: mathematics and Spanish. The government

designed and implemented this exam for school accountability purposes. We refer to it as

the low-stakes exam.

Previous literature shows that females tend to perform worse in standardized tests than

males [Niederle and Vesterlund, 2010]. This gap in performance does not mean that females
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have lower skills than males but that there are gender differences in performance under

competitive pressure. In Figure 2, we show some descriptive statistics regarding gender

differences in our available skill measures. Panel (a) shows that boys score higher than girls

in the admission exam score. In contrast, Panel (b) shows that girls have higher GPAs

than boys. Furthermore, Panel (c) shows that girls have higher GPAs than boys at every

decile of the admission exam score distribution. In this context, rationing over-subscribed

schools seats based only on performance in an admission exam could limit girls’ access to

them. Further, if GPA is a strong predictor of graduation, then such an admission rule could

increase mismatch by restricting the access of high-GPA students to the most academically

demanding schools.

Regarding access to selective schools by socio-economic status panel (a) of Figure 3 shows

a steep negative relationship between the share of low-SES students at a given school and its

selectivity. We measure selectivity with schools’ equilibrium cut-offs. This sorting pattern

could be consistent with students having heterogeneous preferences, but it could also be due

to the one-shot exam score being highly correlated with parental income. Panel (b) of Figure

3 shows that the admission exam score is highly correlated with family income, while middle

school GPA is not. Therefore, as the system only considers the admission exam score, this

can also explain the distribution of low-SES students across schools.

4 Regression Discontinuity Evidence

Elite schools are the most over-subscribed schools in the system, and admission to them

requires clearing their admission cut-offs. We exploit these cut-offs to identify the effect of

marginal admission to an elite school on the probability of graduation. We treat admission

as equal to enrollment because enrollment at elite schools is almost universal. The average

enrollment rate for students admitted to an elite school is 97.42%.

We follow Dustan et al. [2017] and construct a sample of students who would be assigned

to an elite school if they meet the cut-off and assigned to a non-elite school otherwise. Our

definitions of elite schools differ because they only consider as elite schools a subset of them

that specialize in science education. Notably, the schools in their analysis sample are not the
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Figure 2: Skill measures by gender
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Note: Panel (a) in this figure shows the distribution of admission exam scores for girls and
boys. Panel (b) in this figure shows the distribution of GPA for girls and boys. Panel (c) in
this figure shows the average GPA for girls and boys at each decile of the exam score.

most over-subscribed in the market. We impose three sample restrictions. First, we exclude

all ineligible students for admission to an elite school. To be eligible for admission to an elite

school, students must have a GPA higher than 7/10 during middle school. Second, we only

include students who have applied to at least one elite and non-elite school. Third, we only

include students who rank elite schools higher than non-elite ones. The purpose of the last

restriction is to select students with similar preferences in that they prefer elite schools to

non-elite schools.

Our strategy to estimate the effect of admission to a particular institution follows the

same intuition as in Kirkeboen et al. [2016]. In our case, we consider only two institutions,
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Figure 3: School selectivity, skill measures, and students SES
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Note: Panel (a) shows the relationship between the share of low-SES students at a given school
and its selectivity. Each dot represents a school. Panel (a) shows the relationship between parental
income and skill measures. Each skill measure is standardized to mean zero and variance one. We
define a low-SES student as one whose monthly family income is less than 5000 Mexican pesos (458
USD).

elite and non-elite. In the estimation sample, we have students whose first best is an elite

school and whose second best is a non-elite school in the local institution ranking (i.e., same

ordinal preferences around their admission score). However, in addition to students having

the same preferences in the local institution ranking, we only consider students who prefer

elite to non-elite schools in their full ranking. We can impose this last restriction because

most students who apply to both types of schools rank elite schools higher than non-elite

schools. The previous restriction only excludes 815 (0.76%) students.

In our estimation sample, each student has a minimum cut-off for elite admission, ck,

that depends on her preferences. For example, if a student applied to multiple elite schools,

her admission cut-off would be the lowest cut-off of the elite schools she included in her

application. There are k = 30 groups of students that share the same ck, corresponding to

the cut-offs of the 30 elite schools. Within each group k, the following condition is satisfied:

Si ⩾ ck admitted to some elite school,

Si < ck admitted to some non-elite school,

where Si indicates student i score in the admission exam.
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Our empirical specification follows Equation 1, where we stack our previously defined

k groups. In this equation, Yik is a dummy variable that denotes whether student i in

group k graduates from high school. We center the running variable Si by the group-specific

admission cut-offs ck such that a positive value of Si − ck indicates admission to an elite

school. The dummy variable admiti takes a value of one when a student is admitted to an

elite school and zero otherwise.

Yik = µk + γadmiti + δ(Si − ck) + τ(Si − ck)× admiti + ϵik. (1)

Our parameter of interest γ indicates the effect of marginal admission to an elite school

on graduation. For estimation, we follow the non-parametric robust estimator proposed by

Calonico et al. [2014]. We also follow their method to calculate the mean squared error

optimal bandwidth. For robustness, we estimate three additional specifications. First, we

add a polynomial of degree two of the running variable. Second, we include k group fixed

effects (i.e., cut-off fixed effects). Third, since our running variable only takes integer values,

we follow Kolesár and Rothe [2018] approach for estimation and inference with a discrete

running variable. All of our estimation results are not affected by the specification changes.

Regarding the validity of the design [Imbens and Lemieux, 2008], we show that there

is no evidence of manipulation of the running variable around the admission cut-offs. If

students could manipulate the running variable, they could sort themselves to be above

an elite school admission cut-off. This type of sorting is unlikely in our context for two

reasons. First, admission cut-offs are determined in equilibrium after students submit their

applications and take the admission exam. Second, students do not know their score in the

admission exam until the end of the admission process. If there were manipulation, we would

expect to observe bunching of the running variable just above the admission cut-offs. Figure

4 shows the density of the running variable. The density does not show any bunching, and

a continuity test [McCrary, 2008] does not reject its continuity at the admission cut-offs

(p-value=0.958). Our findings are consistent with the absence of manipulation.

Figure 5 shows that other predetermined covariates such as gender, age, GPA, family
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Figure 4: Running variable
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Note: This figure shows the density of the centered running vari-
able. The vertical red line indicates the admission threshold.

income, and number of siblings also do not vary discontinuously at the cut-offs. This is

further evidence supporting the validity of the design. The estimates and standard errors

are in Appendix D.

We follow the extrapolation method of Angrist and Rokkanen [2015] to quantify the

effects for inframarginal applicants. The intuition behind this approach is that the running

variable Si could be ignorable after controlling for a set of observable characteristics Xi.

Therefore, we can use our set of covariates Xi to extrapolate the threshold crossing effect to

students at different levels of Si as long as we have observations in a common support. We

define this condition as:

E[Yij | Xi, Si] = E[Yij | Xi], (2)

where Yij indicates graduation, Si the admission exam score, and Xi the set of covariates

that make Si ignorable. In our set of covariates Xi, we include the low-stakes exam score,

GPA, family income, and gender. Angrist and Rokkanen [2015] also propose a test for the
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Figure 5: Predetermined covariates
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Note: This figure shows binned means of predetermined covariates around the elite ad-
mission thresholds. Income is a dummy variable indicating if the family monthly income is
higher or lower that 5000 pesos (458 USD).

method’s validity that consists of evaluating (at each side of the threshold) if the admission

exam score does not affect graduation after controlling for Xi. Following their test, our

extrapolation is only valid for students up to 15 points on each side of the threshold. We
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Figure 6: The effect of elite schools on graduation
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and ATNT of assignment to elite schools. Our extrapolation is only valid for students at most 15
points around the cut-offs.

show the test results and the common support condition in Appendix H.

Panel (a) of Figure 6 shows a graphical representation of the effect of marginal admission

to an elite school on graduation. Elite schools decrease the graduation rate of marginally

admitted students (six percentage points). We show the estimated parameter γ̂ and its

standard error in Appendix G. Elite schools have a more demanding curriculum and better

quality peers, and students marginally admitted using a single standardized exam may not

be prepared enough for what these schools offer. However, this does not mean that all

students admitted to elite schools experience a negative effect from them. In the first place,

the effect may be different for inframarginal students. Second, students at the margin have

high or low middle school GPAs, and the effect may differ between these subgroups.7

Panel (b) of Figure 6 shows a graphical representation of the results of our extrapolation

exercise. The negative effect of marginal admission to elite schools is heterogeneous and

monotonically decreases with the distance to the admission threshold. Therefore, not all

the students assigned to an elite school experience a six percentage point decrease in their

graduation chances. The effect is already half that even for students at most 15 points above

the threshold. We take this as evidence of the admission exam score playing a role in how

7The correlation between the admission exam score and middle school GPA is 0.4.
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elite school admission affects students.

Before we analyze the effect for students with high and low middle school GPAs, we

show that the design is also valid for each subgroup. There is no evidence of manipulation

of the running variable for our samples of high- and low-GPA students. In addition, the

pre-determined covariates are also continuous at the cut-offs. We include these results in

Appendixes E and F.

4.1 Heterogeneity by GPA

Students at the elite school admission cut-offs can be heterogeneous in other characteristics

that affect graduation. For example, they may have high or low GPAs. Borghans et al.

[2016] show that grades and achievement tests capture IQ and personality traits, but grades

weigh personality traits more heavily. Since personality traits such as self-control or consci-

entiousness could matter for graduation when admitted to an elite school, we next explore

if the effect is different for students with above and below-median GPAs.

In an extreme example, consider the case where the admission exam only captures IQ

while GPA only captures self-control. Then, exploring our heterogeneity of interest would be

equivalent to differentiating between the effect of elite schools on high-ability, low-self-control

students and high-ability, high-self-control students. In this example, to gain admission to

an elite school, a student needs to perform well in the admission exam (high-ability), but

she need not have high self-control. To the extent that graduation when admitted to an elite

school requires you not only to have high ability but also have high self-control, we would

expect differentiated effects.

The panels (a) and (b) in Figure 7 shows that the effect of marginal admission to an

elite school on graduation is heterogeneous by middle school GPA. It is negative (twelve

percentage points) and significant for students with below-median GPA and it does not

affect the graduation of students with above-median GPA. We include point estimates and

standard errors in Appendix G. We take these results as evidence of both skill measures

being important for high school graduation when admitted to an elite school.

Admission to an elite school implies being exposed to a more advanced curriculum and

experiencing higher quality peers, among other factors. It could be the case that high GPA
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Figure 7: Elite school admission and graduation by GPA and gender
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Note: This figure shows binned means of graduation around the elite admission thresholds for boys
and girls, and students with high- and low-GPA.

students experience a different change in peers than low GPA students and that this is

driving our heterogeneous results. We discard this possibility in Appendix I, where we show

that the change in peer quality when admitted to an elite school for the full sample, for the

high GPA sample and for the low GPA sample is approximately the same. We measure peer

quality by the average admission exam score at the admitted school. In other words, better

prepared students as measured by GPA respond differently to a similar peer quality shock

when marginally admitted to an elite school.

In Appendix J, instead of separating students as having above- or below-median GPAs in

the entire distribution of GPAs, we define above- and below-median GPA students relative
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to the distribution of GPAs within their middle schools. We do this to control for middle

school effects and ensure that our results are not driven by attending particular subgroups of

middle schools. Our heterogeneous results by GPA are robust to this alternative definition

of high and low GPA.

In Appendix K, we include an additional robustness check showing that the heterogeneity

by GPA does not depend on elite schools having relatively higher or lower admission cut-

offs. We separate elite schools into two groups, high- and low-cut-offs, among our thirty elite

school cut-offs. We then show that the negative effect for low GPA students and the null

effect for high GPA students is present in both groups of elite schools.

In Appendix L, we show that our heterogeneous results are not just the product of using

multiple measures of the same skill (i.e., noise reduction). To do so, instead of GPA, we

explore heterogeneity by performance in the low-stakes standardized exam. Our results in L

shows negative effects on graduation for both the high and low performers in the low-stakes

standardized exam.

In Appendix M, to isolate the skills that GPA measures from those already accounted

for by standardized exams, we use the residuals from regressing GPA on the admission exam

score and the low-stakes standardized exam to define high and low GPA students. Our results

show that our heterogeneous results in Figure 7 remain almost identical. We interpret this as

evidence that the additional skills that GPA better captures are driving our heterogeneous

results by GPA.

4.2 Heterogeneity by gender

In the last section, we showed that the effect of elite schools on the graduation probability of

marginally admitted students depends on their previous GPA. Since in Section 3, we showed

that girls have higher GPAs than boys and, arguably, are better prepared for elite schools,

we would also expect to observe heterogeneous effects by gender.

The panels (c) and (d) in Figure 7 shows the results of estimating RDDs separately for

girls and boys. The effect for boys is almost identical (decrease of ten percentage points) to

that for students with below-median GPA. In contrast, the effect for girls replicates the null

effect for students with above-median GPA. We include point estimates and standard errors
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in Appendix G. Our results can partially be explained by girls having higher GPAs than

boys throughout the support of the admission exam score (Panel c in Figure 2).

To understand the source of heterogeneity in treatment effects, we follow Gerardino

et al. [2017] and use propensity score weighting to keep one characteristic balanced while

doing subgroup analysis for the other. In our case, we keep gender balanced while doing

heterogeneity by GPA and keep GPA balanced while doing heterogeneity by gender. We show

the main results of this exercise in Appendix N. When we hold gender balanced, we still

observe heterogeneous results between high and low-GPA students, although the difference

in effect sizes is smaller than before. However, when we hold GPA balanced, we no longer

observe differences in the effect between girls and boys. We interpret this as evidence that

what drives our heterogeneous results are the skills being captured by GPA, and what is

behind the gender results is that girls have higher GPAs than boys at the elite admission

cut-offs.

Overall, the results of our RDD analysis tell us two facts. First, the effect of admission

to elite schools is heterogeneous. It varies with the one-shot admission exam scores. Also,

even for students at the margin of admission, it differs between high and low GPA students

and boys and girls. Second, this pattern of heterogeneous results opens the possibility of

reallocations that could improve equity of access without affecting efficiency.

5 Counterfactual Priority Orders

Motivated by the RDD results, we examine the effects of counterfactual priority orders that

may better match students to schools. We combine the admission exam score (si) and GPA

(gi) with different weights (ω) to define new priority orders. Our priority orders follow

Equation 3. Since the matching algorithm is the Serial Dictatorship, all schools j give the

same priority to student i. Notice that when ω = 0, we are in the baseline case where schools

rank students using only their admission exam scores.

priorityωij = (1− ω)si + ωgi, (3)
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where ω ∈ [0, 1].

We create a grid of weights ω that go from zero to one in 0.1 increments for our coun-

terfactuals. We run the Serial Dictatorship algorithm for each grid point to find the stable

equilibrium allocation µω. Equation 4 defines fSD as a matching function that has as inputs

the priorities, students’ preferences Uij, and the available seats. In our counterfactuals, we

keep preferences and seats fixed while changing priorityωij through changes in ω.

µω = fSD(prioritywij, Uij, seatsj). (4)

We use GPA in levels in our counterfactual analysis. However, a potential concern

about using levels is that middle schools may react by inflating grades. Thus, we also

study a counterfactual that combines the admission exam score with within middle school

percentile ranking by GPA. Since within-school rankings are unaffected by grade inflation,

such a policy could help prevent this response. As shown in Appendix Q, our counterfactual

results are not sensitive to the implementation option. Another potential concern could

be that students may respond by transferring between middle schools. However, in the

Mexican context, middle school mobility is restricted since middle school admissions are also

centralized [Fabregas, 2023].

Students could also react by changing their efforts from studying for the admission exam

to working on their middle school coursework. Such a behavioral response is not necessarily

negative. Suppose students move more of their effort toward coursework and away from

studying for the admission exam. In that case, we might expect a larger positive effect

on graduation, assuming that studying for middle school coursework is more productive

in building knowledge/skills associated with future academic success than studying for the

entrance exam. In this case, we would expect our results to be a lower bound for the total

effects on graduation. Other potential ways to increase GPA, such as private tutoring, are

less likely to occur given that we are considering a measure of overall GPA during three years

of middle school.
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5.1 Preferences

We observe students’ ROLs, but there are some reasons why they may not reflect student

preferences. The matching algorithm is the serial dictatorship, which incentivizes truthful

revelation of preferences when students can rank all schools in the market [Svensson, 1999].

However, in the Mexican system, there is a constraint on the number of schools students can

list (a maximum of 20), which may lead to some students not revealing their preferences in

their ROLs [Haeringer and Klijn, 2009; Calsamiglia et al., 2010]. Also, some students may

misreport their preferences due to strategic mistakes [Artemov et al., 2023; Hassidim et al.,

2017]. Critically, some students may omit infeasible (under the status quo priority order)

over-subscribed schools in their ROLs, which may become feasible under alternative priority

orders.

We estimate student preferences for schools under the stability of the market equilibrium

assumption [Fack et al., 2019]. The stability of the market implies that students are assigned

to their preferred ex-post feasible schools. Feasibility is determined by students’ admission

exam scores and schools’ equilibrium cut-offs. We define the indirect utility of student i for

school j as follows.

Uij = δj + γ′s(j)Xi + λDij + ϵij, (5)

where δj denotes average taste for school j. Each school belongs to a sub-system, denoted

by the index s(j). We allow students to have heterogenous tastes for different sub-systems

through the vector of parameters γ′s(j). Individual heterogeneity is captured by vector Xi,

which contains the low-stakes exam score (known at the application stage), middle school

GPA, and gender. kj indicates the selectivity of school j measured by its previous year’s

admission cut-off. We also allow for heterogeneous tastes for selectivity through parameters

ψ′. Parameter λ captures preferences for distance to school j in kilometers. ϵij measures the

unobservables, which we assume to be i.i.d and come from a type I extreme value distribution.

Under the stability assumption, we define the individual choice sets as follows:
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Table 4: WTT

Estimates

Selectivity× GPA 0.260
(0.107)

Selectivity× LS exam -0.005
(0.126)

Selectivity× Girl 0.950
(0.196)

Note: This table shows parameters that cap-
ture heterogeneous preferences for school selectiv-
ity. Selectivity is measured by the previous year’s
admission cut-offs. Individual heterogeneity con-
siders the low-stakes exam score, GPA, and gen-
der. Standard errors in parenthesis.

Ωi = {j : si ≥ κj(µ)}, (6)

where si indicates student i admission exam score and κj(µ) indicates the equilibrium

cut-offs associated with matching µ. Ωi denotes the set of feasible schools for student i given

equilibrium cut-offs κj(µ).

We estimate preference parameters by MLE using a conditional logit with heterogeneous

choice sets. Our model has an outside option that indicates preferences for remaining un-

matched. We normalized the mean utility of the outside option to zero. We use our estimated

preference parameters and draws of ϵij to simulate preferences in the market. We then use

our simulated preferences to approximate stable equilibriums as suggested by Artemov et al.

[2023]. We describe our simulation steps in Appendix P.

In Table 4 we show ψ̂′ estimates. Since equilibrium cut-offs depend on demand and

supply in the market, the previous year’s cut-offs measure how over-subscribed schools are.

Parameters ψ̂′ capture heterogeneous tastes for selectivity. For ease of interpretation, we

divide our parameters by the distance parameter λ̂ such that they are measured in willingness

to travel (WTT). Students with higher GPAs would be willing to travel 0.26 kilometers

farther in order to gain access to more selective schools. Girls would be willing to travel 0.95

kilometers farther to gain access to more selective schools.
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Figure 8: Cut-offs fit
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Note: This figure shows a comparison between the observed and
simulated cut-offs using estimated preferences and a priority order
with ω = 0.

Table 5: Model fit

Elite Non-Elite
Data Model Data Model

Admission exam 90.16 90.01 58.49 58.53
GPA 8.56 8.57 7.88 7.88
Girl 0.45 0.46 0.53 0.53
Graduation 0.71 0.72 0.55 0.57

Note: This table shows the average skill measures, the
share of girls at elite and non-elite schools and graduation
rates. The table compares the observed data and the sim-
ulation using the estimated model and setting ω = 0.

To assess the fit of our model, we compare the observed equilibrium cut-offs in the data

with the equilibrium cut-offs generated by using simulated preferences and a priority order

that only considers the admission exam score (ω = 0). We plot the observed cut-offs against

the simulated cut-offs in Figure 8. The model fits the equilibrium cut-offs remarkably well.

The correlation between observed and simulated cut-offs is 0.95. Furthermore, in Table 5,

we show that we reproduce the average skills measures and gender composition of students

allocated to elite and non-elite schools.

We assume that students’ preferences do not depend on equilibrium outcomes. Consider
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the case where students’ preferences for schools depend on the average skills of their future

peers, and students have rational expectations. Then, the change in priorities could affect

the average skills of students assigned to different schools, changing students’ preferences

for schools. A common assumption in the school choice literature is that preferences do not

depend on equilibrium outcomes [Agarwal and Somaini, 2020]. We also work under this

assumption.

5.2 Graduation

We define potential outcomes as:

Yij = αj + β′
jXi + νij, (7)

where Yij indicates the graduation status of student i if matched to school j. αj measures

school j effect and β′
j is a vector that capture match effects between student covariates Xi

and school j. νij captures unobservables. In order to simulate counterfactual graduation

rates, we would like to obtain consistent estimates of θj = (αj, β
′
j).

As students are not randomly matched to schools νij does not necessarily have mean zero

even conditional on Xi. To deal with selection on unobservables we follow [Abdulkadiroğlu

et al., 2020; Barahona et al., 2023] and include a control function derived from our previously

defined choice model. We work under the following restriction:

E[Yi | Xi, Di, Ri, Si = j] = αc(j) +X ′
iβc(j) + φjλj(Xi, Di,Ωi), (8)

where Xi is a vector that includes the low-stakes standardized exam, gender, and GPA,

Si is the admission exam score, and Di is a vector that includes the distances in kilometers

from each student i to each school j. We use Di as our exclusion restriction, assuming it

affect choices but does not have a direct effect on outcomes. Notice that our specification

allows for the control function to have different effects at different schools j through φj.
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Table 6: Average match effects by subsystem

SUB 1 SUB 2 SUB 3 SUB 4 SUB 5 SUB 6 SUB 7 SUB 8 SUB 9

Admission exam 0.067 0.070 0.056 0.052 0.085 0.067 0.069 0.073 0.031
(0.032) (0.043) (0.013) (0.054) (0.071) (0.038) (0.041) (0.000)

GPA 0.154 0.157 0.142 0.147 0.134 0.108 0.121 0.121 0.114
(0.024) (0.022) (0.004) (0.016) (0.052) (0.028) (0.022) (0.000)

Note: This table shows average match effects β̂c(j) by subsystem. Standard deviations in parenthesis.

We provide more details on the assumptions and parametric form of our control function in

Appenddix O.

To reduce the number of parameters to estimate, we group schools j into campuses that

we index by c(j). The J = 658 schools belong to 311 campuses. The physical location

of the schools defines a campus, and each campus is part of a unique subsystem. In our

notation, j = 0 indicates that a student is unassigned by the matching algorithm. Under

this specification, our parameters of interest become θj = (αc(j), β
′
c(j), φj).

For ease of exposition, we show the average of selected estimates at the subsystem level

in Table 6. The same as in Table 1, SUB 1 and SUB 2 denote the two elite subsystems. We

highlight two results from this table. First, the admission exam score and GPA are important

determinants of on-time graduation in all subsystems. Second, GPA has the largest effect

on graduation at elite schools.

Overall, our model does a good job fitting the sorting patterns and graduation rates at

elite and non-elite schools in the baseline case ω = 0 (Table 5).

5.3 Results

Our counterfactual exercises result in different equilibrium allocations of students across

schools. We first analyze the changes in the composition of students allocated to elite schools

and then explore how these changes affect the graduation rates of students assigned to elite

and non-elite schools.

Figure 9 shows that the higher the weight in GPA, the higher the share of girls assigned

to elite schools. This change occurs because girls prefer selective schools (Table 4), but the

one-shot exam priority order limits their access. By adding weight to GPA, a measure in
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Figure 9: Changes in the composition of students at elite schools
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Note: This figure shows the share of girls and low-SES students as-
signed to elite schools in each counterfactual equilibrium (µω). The
shaded bar indicates the baseline case when ω = 0. The x-axis indi-
cates the weight on GPA (ω). The weight on the admission exam score
is (1 − ω). We define a low-SES student as one whose family income
is lower than 5000 Mexican pesos per month (458 USD).

which girls outperform boys (Figure 2), more girls gain access to elite schools. Figure 9

also shows that the higher the weight in GPA, the higher the share of low-SES students

assigned to elite schools. Income is highly correlated with the admission exam score but

less correlated with GPA. The correlation between income and the admission exam score

can partially be explained by high-SES students accessing costly private exam preparation

institutions. Adding weight to GPAmakes the admission exam score relatively less important

and increases low-SES students’ access to elite schools.

In panel (a) of Figure 10, we show that the relationship between the average graduation at

elite schools and the weight on GPA shows some concavity. Since the admission exam score

and GPA are important determinants of graduation from elite schools, it is not necessarily

optimal to put all the weight on one skill measure or another. When the weight on GPA is

too high, too many low admission exam score students gain access to elite schools, affecting

the graduation rate. Larger changes in graduation occur at elite schools because they are

the most affected by changes to the priority index, since most seat rationing applies to them.
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Figure 10: Counterfactual graduation rates
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Note: Panel (a) shows the average graduation rate at elite schools, non-elite schools and all schools
in each counterfactual equilibrium (µω). Panel (b) shows the average graduation rate of girls and
low-SES students at elite schools in each counterfactual equilibrium (µω). In both panels, the shaded
bar indicates the baseline case when ω = 0. The x-axis indicates the weight on GPA (ω). The weight
on the admission exam score is (1 − ω). We define a low-SES student as one whose family income
is lower than 5000 Mexican pesos per month (458 USD).

As we increase the weight on GPA, the graduation rates for non-elite schools and all schools

in the market are mostly unaffected.

Focusing on the graduation rate at elite schools, panel (b) of Figure 10 shows that girls’

and low-SES students’ graduation rates also have a concave relationship with the weight

on GPA. The graduation rate for both groups of students reaches its maximum when the

weight on GPA and the admission exam score are roughly equal which give us insight into the

optimal weights in skill measures. For example, consider that policymakers’ objectives are

to increase the share of low-SES students at elite schools, the share of girls at elite schools,

while maximizing their graduation rates. In this case, the optimal weights are 60% on GPA

and 40% on the admission exam score.

6 Conclusions

How a central planner chooses to ration school seats in a centralized education system can

affect the equity of access and graduation rates. The relevance of this choice is highlighted

when a system priority ordering includes skill measures, and students have diverse latent
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skills. In this case, using only a one-shot exam as the priority order could match underpre-

pared students with the most academically demanding schools, affecting their graduation

rate. Furthermore, this practice could affect the equity of access when some subgroups

of students underperform in one-shot exams while outperforming their peers in other skill

measures. Thus, priority orderings play an essential role when centralized education sys-

tems evaluations go beyond efficiency measures based on revealed preferences and consider

additional policy-relevant outcomes such as equity of access and graduation rates.

We use administrative data from the centralized high school admission system in Mexico

City, where all schools share a priority order that relies solely on a one-shot admission

exam. We study the effects of adding the information in middle school overall GPA to the

priority order. We focus on GPA because previous literature shows that grades measure

non-cognitive skills to a higher degree than achievement tests and that non-cognitive skills

are a strong predictor of educational success. We first show that boys and low middle

school GPA students marginally admitted to the most oversubscribed schools (i.e., elite

schools) experience a decrease in their graduation probability whereas high middle school

GPA students and girls are unaffected. Our first set of results motivates the importance of

using the informational content of grades when considering what skill measures to use in the

priority order.

Guided by these results, we then study the effects of counterfactual admission policies

where the central planner increasingly adds weight to GPA (or within school ranking by

GPA) in the priority order. We have two important findings. First, the higher the weight on

GPA, the higher the share of girls and low-SES students admitted to elite schools. Behind

this result is that girls have higher GPAs than boys, and family income is less correlated with

GPA than the admission exam score. Second, the choice of weights matter for the effects on

graduation. The graduation rate at elite schools has a concave relationship with the weight

on GPA. When the weight on GPA is too high, too many low admission exam score students

gain access to elite schools, affecting the graduation rate. Both GPA and admission exam

score are important determinants of graduation. For a central planner that values equality

of access and increasing the graduation rate at elite schools, the optimal weights for GPA

and the admission exam score are 60% and 40%, respectively.
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A limitation of our study is that our counterfactual admission policies could induce be-

havioral responses that we are not currently considering.8 For example, they could affect

students’ effort allocation between exam preparation and middle school coursework by in-

creasing the effort allocated to coursework. In this paper, we assume that study effort does

not change. However, if increased study effort in middle school coursework leads to higher

study effort in high school coursework and time spent studying for coursework is more pro-

ductive than time spent studying for an admission exam, then our effect on the elite schools’

graduation rate would be a lower-bound.9

From a policy perspective, our results indicate that combining the informational content

of GPA and the admission exam score in its priority ordering can benefit the centralized

system in Mexico City. More broadly, other centralized systems that rely on a one-shot

exam score to define school priorities could also benefit from adding some weight to GPA.

Examples of such systems are the centralized education systems in Romania, Kenya, Trinidad

and Tobago, Ghana, Barbados, and the college admission system in China.

8For the case of university admissions, Arenas and Calsamiglia [2022] study a reform in Spain that
increased the weight of a standardized exam from 40% to 57% while decreasing the weight on prior GPA.
They show that behavioral responses explain 25% of the total effect of the change.

9Stinebrickner and Stinebrickner [2006] show that coursework study effort is strongly correlated across
time between high school and college.

31



References
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Appendices

A The admission exam

Table 7: Exam sections

Questions

Math 12

Physics 12

Chemistry 12

Biology 12

Spanish 12

History 12

Geography 12

Civics and Ethics 12

Verbal ability 16

Math ability 16

Total 128

Note: This table shows the number of questions in different subjects that are part

of the admission exam.

The admission exam is a multiple choice exam with 128 questions and five choices per

question. Each correct answer is worth 1 point, and there are no negative points for wrong

answers. Table 7 shows the different sections of the admission exam. The total score is

calculated by adding up all the correct answers. Students must obtain a score no lower than

31 points in the admission exam to participate in the assignment process.

B Serial dictatorship

All schools share a unique priority ordering, and each student defines her ROL. Then, the

matching algorithm is as follows:

• Step 1: The first ranked student is assigned to the first school on her ROL.

I



• Step (k+1): For any k ≥ 1, once the kth student in the priority ranking has been

assigned, the student ranked (k+1)th is assigned to the highest-ranked element of her

ROL that still has a vacancy. If all of the schools in her ROL are full at that point,

she is left unassigned, and the algorithm proceeds to the next student.

• Stop: The algorithm stops after all students have been processed.

Notice that this algorithm is a special case of the Student Proposing Deferred Acceptance

algorithm in which all schools share the same ranking of students.

C High school graduation

Table 8: High school graduation

Step 1 Step 2 Step 3

Unmatched 41.5 43.0

SUB 1 67.0 72.4 72.4

SUB 2 60.6 68.4 68.7

SUB 3 63.2 76.4 76.6

SUB 4 51.1 59.5 60.2

SUB 5 40.2 51.6 52.6

SUB 6 38.5 64.1 64.3

SUB 7 43.0 57.2 57.5

SUB 8 37.1 52.0 52.1

SUB 9 48.8 62.2 62.2

Total 41.6 57.7 58.2

Note: This table shows graduation rates at each construction step.

We construct our graduation outcome variable following three steps. In the first step, we

collect each subsystem’s administrative graduation records 3-5 years after admission. Notice

that this measures graduation from the assigned subsystem. We obtained this type of grad-

uation records for all subsystems except SUB 6, for which we could only obtain records for

half the admitted students. In the second step, we match the students with an exit exam
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students take at the end of high school. This allows us to improve our graduation measure

by capturing the graduation of students who switched schools across subsystems, reapply in

the next admission cycle, or enrolled in private schools. The exit exam helps us determine

the graduation status of all matched and unmatched students except those admitted to SUB

1 because this subsystem does not participate in the exit exam. In the third step, we search

for the students not matched to SUB 1 during the 2007 admission cycle in the administrative

admission and graduation records of SUB 1 for the following admission cycle. The purpose

of the last step is to capture the graduation status of students who reapplied after being

rejected by SUB 1 in 2007 and were admitted to it during the next admission cycle.

In other words, each step improves our graduation measure compared to the previous

one. The graduation variable we use for analysis is the one we obtained after the third step.

D Predetermined covariates

Table 9: Female

CCT CCT P2 CCT FE KR

RD Estimate 0.011 0.004 0.010 0.011

(0.012) (0.015) (0.012) (0.010)

Note: Standard errors in parenthesis. The first three columns show RD estimates

following the methods in Calonico et al. [2014] and the associated software package

rdrobust. The first column shows the estimates of a local linear regression. The

second column uses a polynomial of degree two for the running variable. The third

column uses local linear regression with cut-off fixed effects. The fourth column

shows RD estimates following the methods in Kolesár and Rothe [2018] and the

associated software package rdhonest.
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Table 10: Age

CCT CCT P2 CCT FE KR

RD Estimate 0.022 0.044 0.030 0.010

(0.027) (0.036) (0.029) (0.043)

Note: Standard errors in parenthesis. The first three columns show RD estimates

following the methods in Calonico et al. [2014] and the associated software package

rdrobust. The first column shows the estimates of a local linear regression. The

second column uses a polynomial of degree two for the running variable. The third

column uses local linear regression with cut-off fixed effects. The fourth column

shows RD estimates following the methods in Kolesár and Rothe [2018] and the

associated software package rdhonest.

Table 11: GPA

CCT CCT P2 CCT FE KR

RD Estimate 0.026 0.028 0.024 0.021

(0.019) (0.021) (0.017) (0.023)

Note: Standard errors in parenthesis. The first three columns show RD estimates

following the methods in Calonico et al. [2014] and the associated software package

rdrobust. The first column shows the estimates of a local linear regression. The

second column uses a polynomial of degree two for the running variable. The third

column uses local linear regression with cut-off fixed effects. The fourth column

shows RD estimates following the methods in Kolesár and Rothe [2018] and the

associated software package rdhonest.
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Table 12: Income

CCT CCT P2 CCT FE KR

RD Estimate -0.003 -0.004 -0.002 -0.001

(0.014) (0.015) (0.014) (0.014)

Note: Standard errors in parenthesis. Income is a dummy variable indicating if

the family monthly income is higher or lower that 5000 pesos (458 USD). The first

three columns show RD estimates following the methods in Calonico et al. [2014]

and the associated software package rdrobust. The first column shows the estimates

of a local linear regression. The second column uses a polynomial of degree two for

the running variable. The third column uses local linear regression with cut-off fixed

effects. The fourth column shows RD estimates following the methods in Kolesár

and Rothe [2018] and the associated software package rdhonest.

Table 13: Siblings

CCT CCT P2 CCT FE KR

RD Estimate 0.013 0.019 0.010 0.025

(0.037) (0.043) (0.037) (0.037)

Note: Standard errors in parenthesis. The first three columns show RD estimates

following the methods in Calonico et al. [2014] and the associated software package

rdrobust. The first column shows the estimates of a local linear regression. The

second column uses a polynomial of degree two for the running variable. The third

column uses local linear regression with cut-off fixed effects. The fourth column

shows RD estimates following the methods in Kolesár and Rothe [2018] and the

associated software package rdhonest.
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E RDD validity: low GPA

Figure 11: Density of the running variable, low GPA
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Note: This figure shows the density of the centered running vari-

able for low GPA students. The shaded regions are 95% confidence

intervals.

Table 14: Female

CCT CCT P2 CCT FE KR

RD Estimate 0.002 -0.008 0.005 -0.001

(0.016) (0.021) (0.015) (0.017)

Note: Standard errors in parenthesis. The first three columns show RD estimates

following the methods in Calonico et al. [2014] and the associated software package

rdrobust. The first column shows the estimates of a local linear regression. The

second column uses a polynomial of degree two for the running variable. The third

column uses local linear regression with cut-off fixed effects. The fourth column

shows RD estimates following the methods in Kolesár and Rothe [2018] and the

associated software package rdhonest.
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Table 15: Age

CCT CCT P2 CCT FE KR

RD Estimate 0.060 0.096 0.061 0.064

(0.050) (0.068) (0.050) (0.048)

Note: Standard errors in parenthesis. The first three columns show RD estimates

following the methods in Calonico et al. [2014] and the associated software package

rdrobust. The first column shows the estimates of a local linear regression. The

second column uses a polynomial of degree two for the running variable. The third

column uses local linear regression with cut-off fixed effects. The fourth column

shows RD estimates following the methods in Kolesár and Rothe [2018] and the

associated software package rdhonest.

Table 16: GPA

CCT CCT P2 CCT FE KR

RD Estimate 0.010 0.013 0.010 0.012

(0.014) (0.016) (0.014) (0.014)

Note: Standard errors in parenthesis. The first three columns show RD estimates

following the methods in Calonico et al. [2014] and the associated software package

rdrobust. The first column shows the estimates of a local linear regression. The

second column uses a polynomial of degree two for the running variable. The third

column uses local linear regression with cut-off fixed effects. The fourth column

shows RD estimates following the methods in Kolesár and Rothe [2018] and the

associated software package rdhonest.
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Table 17: Income

CCT CCT P2 CCT FE KR

RD Estimate -0.001 0.001 -0.000 0.010

(0.021) (0.027) (0.021) (0.022)

Note: Standard errors in parenthesis. Income is a dummy variable indicating if

the family monthly income is higher or lower that 5000 pesos (458 USD). The first

three columns show RD estimates following the methods in Calonico et al. [2014]

and the associated software package rdrobust. The first column show the estimates

of a local linear regression. The second column uses a polynomial of degree two for

the running variable. The third column uses local linear regression with cut-off fixed

effects. The fourth column shows RD estimates following the methods in Kolesár

and Rothe [2018] and the associated software package rdhonest.

Table 18: Siblings

CCT CCT P2 CCT FE KR

RD Estimate 0.032 0.056 0.026 0.104

(0.056) (0.069) (0.055) (0.071)

Note: Standard errors in parenthesis. The first three columns show RD estimates

following the methods in Calonico et al. [2014] and the associated software package

rdrobust. The first column shows the estimates of a local linear regression. The

second column uses a polynomial of degree two for the running variable. The third

column uses local linear regression with cut-off fixed effects. The fourth column

shows RD estimates following the methods in Kolesár and Rothe [2018] and the

associated software package rdhonest.
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F RDD validity: high GPA

Figure 12: Density of the running variable, high GPA
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Note: This figure shows the density of the centered running vari-

able for high GPA students. The shaded regions are 95% confidence

intervals.

Table 19: Female

CCT CCT P2 CCT FE KR

RD Estimate 0.014 0.008 0.012 0.006

(0.016) (0.021) (0.016) (0.021)

Note: Standard errors in parenthesis. The first three columns show RD estimates

following the methods in Calonico et al. [2014] and the associated software package

rdrobust. The first column shows the estimates of a local linear regression. The

second column uses a polynomial of degree two for the running variable. The third

column uses local linear regression with cut-off fixed effects. The fourth column

shows RD estimates following the methods in Kolesár and Rothe [2018] and the

associated software package rdhonest.
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Table 20: Age

CCT CCT P2 CCT FE KR

RD Estimate 0.010 0.017 0.009 -0.009

(0.031) (0.042) (0.031) (0.045)

Note: Standard errors in parenthesis. The first three columns show RD estimates

following the methods in Calonico et al. [2014] and the associated software package

rdrobust. The first column shows the estimates of a local linear regression. The

second column uses a polynomial of degree two for the running variable. The third

column uses local linear regression with cut-off fixed effects. The fourth column

shows RD estimates following the methods in Kolesár and Rothe [2018] and the

associated software package rdhonest.

Table 21: GPA

CCT CCT P2 CCT FE KR

RD Estimate 0.011 0.015 0.010 0.013

(0.015) (0.016) (0.014) (0.018)

Note: Standard errors in parenthesis. The first three columns show RD estimates

following the methods in Calonico et al. [2014] and the associated software package

rdrobust. The first column shows the estimates of a local linear regression. The

second column uses a polynomial of degree two for the running variable. The third

column uses local linear regression with cut-off fixed effects. The fourth column

shows RD estimates following the methods in Kolesár and Rothe [2018] and the

associated software package rdhonest.
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Table 22: Income

CCT CCT P2 CCT FE KR

RD Estimate -0.006 -0.005 -0.007 -0.004

(0.018) (0.022) (0.018) (0.021)

Note: Standard errors in parenthesis. Income is a dummy variable indicating if

the family monthly income is higher or lower that 5000 pesos (458 USD). The first

three columns show RD estimates following the methods in Calonico et al. [2014]

and the associated software package rdrobust. The first column shows the estimates

of a local linear regression. The second column uses a polynomial of degree two for

the running variable. The third column uses local linear regression with cut-off fixed

effects. The fourth column shows RD estimates following the methods in Kolesár

and Rothe [2018] and the associated software package rdhonest.

Table 23: Siblings

CCT CCT P2 CCT FE KR

RD Estimate -0.008 -0.005 -0.009 0.007

(0.041) (0.060) (0.042) (0.045)

Note: Standard errors in parenthesis. The first three columns show RD estimates

following the methods in Calonico et al. [2014] and the associated software package

rdrobust. The first column shows the estimates of a local linear regression. The

second column uses a polynomial of degree two for the running variable. The third

column uses local linear regression with cut-off fixed effects. The fourth column

shows RD estimates following the methods in Kolesár and Rothe [2018] and the

associated software package rdhonest.
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G Main Estimates

Table 24: Graduation

CCT CCT P2 CCT FE KR

RD Estimate -0.060 -0.048 -0.061 -0.045

(0.011) (0.015) (0.011) (0.015)

Note: Standard errors in parenthesis. The first three columns show RD estimates

following the methods in Calonico et al. [2014] and the associated software package

rdrobust. The first column shows the estimates of a local linear regression. The

second column uses a polynomial of degree two for the running variable. The third

column uses local linear regression with cut-off fixed effects. The fourth column

shows RD estimates following the methods in Kolesár and Rothe [2018] and the

associated software package rdhonest.
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Table 25: Graduation by GPA

CCT CCT P2 CCT FE AK

High GPA -0.011 -0.001 -0.009 -0.008

(0.014) (0.019) (0.015) (0.014)

Low GPA -0.117 -0.115 -0.118 -0.091

(0.016) (0.020) (0.017) (0.022)

Difference 0.106 0.114 0.109 0.083

(0.022) (0.027) (0.022) (0.026)

Note: Standard errors in parenthesis. The first three columns show RD estimates

following the methods in Calonico et al. [2014] and the associated software package

rdrobust. The first column shows the estimates of a local linear regression. The

second column uses a polynomial of degree two for the running variable. The third

column uses local linear regression with cut-off fixed effects. The fourth column

shows RD estimates following the methods in Kolesár and Rothe [2018] and the

associated software package rdhonest.
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Table 26: Graduation by gender

CCT CCT P2 CCT FE AK

Girls -0.021 0.008 -0.020 -0.015

(0.016) (0.022) (0.016) (0.016)

Boys -0.098 -0.097 -0.097 -0.083

(0.017) (0.019) (0.017) (0.022)

Difference 0.077 0.105 0.076 0.068

(0.024) (0.029) (0.024) (0.027)

Note: Standard errors in parenthesis. The first three columns show RD estimates

following the methods in Calonico et al. [2014] and the associated software package

rdrobust. The first column shows the estimates of a local linear regression. The

second column uses a polynomial of degree two for the running variable. The third

column uses local linear regression with cut-off fixed effects. The fourth column

shows RD estimates following the methods in Kolesár and Rothe [2018] and the

associated software package rdhonest.
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H Extrapolation

Table 27: Test

LEFT RIGHT

Coef 0.001 -0.000

t-stat 1.575 0.132

p-value 0.115 0.895

N 21,846 17,864

Note: This table shows the conditional independence assumption test suggested

by Angrist and Rokkanen [2015]. Coef is the coefficient of the running variable at

each side of the cut-offs controlling for our set of covariates Xi. We restrict the ex-

trapolation to a distance of 15 points from the admission cut-offs. Our specification

also include cut-off fixed-effects.

.

Figure 13: Common support
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I Change in peer quality

We measure peer quality by the average admission exam score of the students admitted to

a given school. The admission exam score takes integer values between 31 and 128.

Table 28: Change in peers

CCT CCT P2 CCT FE KR

RD Estimate 19.216 19.187 19.167 18.863

(0.266) (0.235) (0.250) (0.413)

Note: The outcome for all columns is peer quality measured by the average admis-

sion exam score at the assigned school. The first three columns show RD estimates

following the methods in Calonico et al. [2014] and the associated software package

rdrobust. The first column shows the estimates of a local linear regression. The

second column uses a polynomial of degree two for the running variable. The third

column uses local linear regression with cut-off fixed effects. The fourth column

shows RD estimates following the methods in Kolesár and Rothe [2018] and the

associated software package rdhonest.
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Table 29: Change in peers by GPA

CCT CCT P2 CCT FE KR

High GPA 19.363 19.344 19.217 19.079

(0.348) (0.313) (0.319) (0.357)

Low GPA 19.207 19.033 19.276 19.031

(0.324) (0.323) (0.327) (0.361)

Difference 0.155 0.311 -0.059 0.048

(0.476) (0.450) (0.457) (0.507)

Note: The outcome for all columns is peer quality measured by the average admis-

sion exam score at the assigned school. The first three columns show RD estimates

following the methods in Calonico et al. [2014] and the associated software package

rdrobust. The first column shows the estimates of a local linear regression. The

second column uses a polynomial of degree two for the running variable. The third

column uses local linear regression with cut-off fixed effects. The fourth column

shows RD estimates following the methods in Kolesár and Rothe [2018] and the

associated software package rdhonest.

J Above and below-median relative to within middle

school GPA distribution

Instead of separating students as having above or below median GPAs in the entire distribu-

tion of GPAs, we define above and below median GPA students relative to the distribution of

GPAs within their middle schools. We do this to control for middle school fixed-effects and

ensure that our results are not driven by attending particular subgroups of middle schools.

In Figure 14, we show that our previous results are unchanged by this alternative definition

of high and low GPA students.
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Figure 14: Graduation by GPA ranking
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(a) Graduation: low GPA ranking
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(b) Graduation: high GPA ranking

Note: This figure shows binned means of graduation around the elite admission thresholds

for students above and below median within middle school percentile ranking by GPA.

Table 30: Graduation by GPA ranking

CCT CCT P2 CCT FE AK

High Resid -0.013 -0.003 -0.013 -0.005

(0.013) (0.018) (0.013) (0.015)

Low Resid -0.122 -0.117 -0.122 -0.094

(0.016) (0.021) (0.016) (0.022)

Difference 0.109 0.114 0.109 0.089

(0.021) (0.028) (0.021) (0.027)

Note: Standard errors in parenthesis. The first three columns show RD estimates

following the methods in Calonico et al. [2014] and the associated software package

rdrobust. The first column shows the estimates of a local linear regression. The

second column uses a polynomial of degree two for the running variable. The third

column uses local linear regression with cut-off fixed effects. The fourth column

shows RD estimates following the methods in Kolesár and Rothe [2018] and the

associated software package rdhonest.
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K Elite schools with high and low cut-offs

For the RDD analysis we pool k groups of students that share a common elite school cut-off

ck. In this Appendix we show that the effects on graduation do not depend on elite schools

having high or low cut-offs. Instead of pooling together our k groups, we separate these

groups into low and high elite school cut-offs and repeat the analysis for each sub-sample.

Figure 15: Elite school admission and graduation: low elite cut-offs

0
.2

.4
.6

.8
1

G
ra

du
at

io
n

-20 -10 0 10 20
Centered admission exam score

EliteNon-Elite

(a) Graduation: low GPA
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(b) Graduation: high GPA

Note: This figure shows binned means of graduation around low elite school admission

thresholds.
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Table 31: Graduation, low elite cut-offs

CCT CCT P2 CCT FE AK

High GPA -0.000 -0.003 0.001 -0.007

(0.024) (0.027) (0.024) (0.026)

Low GPA -0.124 -0.112 -0.124 -0.094

(0.023) (0.029) (0.024) (0.026)

Difference 0.124 0.109 0.125 0.087

(0.034) (0.040) (0.034) (0.037)

Note: Standard errors in parenthesis. The first three columns show RD estimates

following the methods in Calonico et al. [2014] and the associated software package

rdrobust. The first column shows the estimates of a local linear regression. The

second column uses a polynomial of degree two for the running variable. The third

column uses local linear regression with cut-off fixed effects. The fourth column

shows RD estimates following the methods in Kolesár and Rothe [2018] and the

associated software package rdhonest.

Figure 16: Elite school admission and graduation on time: high elite cut-offs
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(a) Graduation: low GPA
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(b) Graduation: high GPA

Note: This figure shows binned means of graduation around high elite school

admission thresholds.
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Table 32: Graduation, high elite cut-offs

CCT CCT P2 CCT FE AK

High GPA -0.010 0.001 -0.011 -0.004

(0.021) (0.027) (0.021) (0.023)

Low GPA -0.103 -0.092 -0.102 -0.087

(0.029) (0.036) (0.029) (0.036)

Difference 0.092 0.093 0.091 0.083

(0.036) (0.045) (0.036) (0.042)

Note: Standard errors in parenthesis. The first three columns show RD estimates

following the methods in Calonico et al. [2014] and the associated software package

rdrobust. The first column shows the estimates of a local linear regression. The

second column uses a polynomial of degree two for the running variable. The third

column uses local linear regression with cut-off fixed effects. The fourth column

shows RD estimates following the methods in Kolesár and Rothe [2018] and the

associated software package rdhonest.

XXI



L RDD by low-stakes exam score

Figure 17: Elite school admission and on-time graduation by low-stakes exam
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(a) Graduation: low low-stakes exam score
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(b) Graduation: high low-stakes exam score

Note: This figure shows binned means of graduation around the elite admission thresholds for

students with high and low scores in the low-stakes standardized exam.
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Table 33: Graduation by low-stakes exam

CCT CCT P2 CCT FE AK

High LS -0.043 -0.033 -0.041 -0.045

(0.017) (0.020) (0.017) (0.017)

Low LS -0.064 -0.060 -0.065 -0.057

(0.017) (0.025) (0.017) (0.023)

Difference 0.021 0.027 0.023 0.012

(0.024) (0.032) (0.024) (0.029)

Note: Standard errors in parenthesis. The first three columns show RD estimates

following the methods in Calonico et al. [2014] and the associated software package

rdrobust. The first column shows the estimates of a local linear regression. The

second column uses a polynomial of degree two for the running variable. The third

column uses local linear regression with cut-off fixed effects. The fourth column

shows RD estimates following the methods in Kolesár and Rothe [2018] and the

associated software package rdhonest.

M RDD by residuals

Define:

GPAi = α0 + α1si + α2lsi + ϵi, (9)

where si is the score in the admission exam score, lsi is the score in the low-stakes exam,

and GPAi is middle school GPA.

We estimate equation 9 and use ϵ̂i to define high and low residuals (above and below

median).
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Figure 18: Graduation by GPA residuals
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(a) Graduation: low ϵ̂i
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(b) Graduation: high ϵ̂i

Note: This figure shows binned means of graduation around the elite admission thresholds

for students with high and low GPA residuals.

Table 34: Graduation by GPA residuals

CCT CCT P2 CCT FE AK

High Resid -0.017 -0.005 -0.016 -0.004

(0.013) (0.019) (0.013) (0.017)

Low Resid -0.111 -0.109 -0.111 -0.089

(0.016) (0.019) (0.016) (0.021)

Difference 0.094 0.104 0.095 0.085

(0.021) (0.026) (0.021) (0.027)

Note: Standard errors in parenthesis. The first three columns show RD estimates

following the methods in Calonico et al. [2014] and the associated software package

rdrobust. The first column shows the estimates of a local linear regression. The

second column uses a polynomial of degree two for the running variable. The third

column uses local linear regression with cut-off fixed effects. The fourth column

shows RD estimates following the methods in Kolesár and Rothe [2018] and the

associated software package rdhonest.
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N GPA and gender

To compare two subgroups while holding another observable characteristic constant, we

follow the approach proposed by Gerardino et al. [2017]. For example, in our case, the

subgroup of students with high GPAs has a higher share of girls than those with low GPAs.

Thus, the method allows us to reweight the observations to keep gender balanced across

subgroups while studying heterogeneous effects between high- and low-GPA students.

Table 35: RDD estimates using propensity score weighting

Gender balanced GPA balanced

Low GPA -0.095

(0.017)

High GPA -0.019

(0.012)

Boys -0.032

(0.019)

Girls -0.007

(0.013)

Difference 0.076 0.024

(0.020) (0.023)

Note: The outcome for all columns is graduation. The first column shows RDD

estimates for low and high GPA students while holding gender balanced across

subgroups. The second column shows RDD estimates for boys and girls while

holding GPA balanced across subgroups. The last row shows the difference in

treatment effects across subgroups. Standard errors in parenthesis.

O Control function

Outcome equation:
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Yij = αj + β′
jXi + νij

Choice model:

Uij = Vij + ϵij

Following the derivation in Bourguignon et al. [2007], under the linearity assumption of

Dubin and McFadden [1984]:

λj = E[νij | Yij is observed] = −ln(Pij),

where Pij is a choice probability derived from the choice model.

λj′ = E[νij | Yij is not observed] =
Pij′ln(Pij′)

1− Pij′
for j′ ̸= j

Under Dahl [2002] index sufficiency assumption, we can use λj as our control function

while omitting all the λj′ . This simplication allows for self-selection in our model to have a

differential effect on graduation at different schools (φj).

E[Yi | Xi, Di, Ri, Si = j] = αc(j) +X ′
iβc(j) + φjλj(Xi, Di,Ωi), (10)

Notice that as our choice model have heterogeneous choice sets, our control function will

also depend on the ex-post feasible choice sets through Ωi.
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P Simulation steps

For a given set of weights ω and (1− ω), let S = 100 denote the number of simulations.

For each ϵ
(s)
ij , we calculate U

(s)
ij :

U
(s)
ij = Vij + ϵ

(s)
ij

For each U
(s)
ij we obtain the stable equilibrium µ(s):

µ(s) = fSD(priorityωij, U
(s)
ij , seatsj)

For each µ(s) we obtain the equilibrium cut-offs κj(µ
(s)) and the ex-post feasible choice

sets Ω
(s)
i :

Ω
(s)
i = {j : si ≥ κj(µ

(s))}

We then use our value-added parameters to obtain:

gij(s) = αc(j(s)) +X ′
iβc(j(s)) + φj(s)λj(s)(Xi, Di,Ω

(s)
i )

Where:

λj(Xi, Di,Ω
(s)
i ) = −ln

(
Pij(s)

)
And:
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Pij(s) =
exp(Vij(s))∑
k∈Ω(s)

i
exp(Vik)

Finally, we average our simulations to obtain the counterfactual graduation probability

ĝi as:

ĝi =
1

S
gij(s)

Q Within school ranking by GPA

In this section, we include the results of a counterfactual analysis that increasingly adds

weight to applicants’ within-middle school percentile ranking by GPA.
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