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Abstract

We study whether the academic effects of being marginally admitted to an elite

science school depend on the admission year as a reflection of how school characteris-

tics change over time. We take advantage of five years (2005-2009) of administrative

data on a large centralized high school admission system. We find that the effect on

mathematics test scores at the end of high school decreases each year, starting positive

and statistically significant in 2005 and ending not significant by 2009. We show that

the discontinuous jumps in peer quality and other school characteristics induced by

elite school admission have not systematically changed. However, the gains in school

quality decreased, affecting the treatment definition. Varying relative school quality

limits the external validity of otherwise internally valid estimates.

Keywords: School choice, Upper-secondary education, Education policy.

JEL codes: I21, I24, I28, J24.

∗We thank seminar participants at the Society of Labor Economics Conference, the University of Western

Ontario, and the University of Wisconsin for valuable feedback and suggestions. All remaining errors are

our own.
†Department of Economics, University of Western Ontario. E-mail: snavarr@uwo.ca.
‡School of Economics, University of Edinburgh. E-mail: mparigua@ed.ac.uk.

1



1 Introduction

In many centralized education systems, a considerable proportion of students apply to at-

tend high-performing schools (hereafter referred to as elite schools). They hope that these

schools’ characteristics, such as a more stimulating peer environment, superior infrastructure,

highly qualified teachers, and better curriculum, will lead to greater academic success, and

ultimately to better outcomes overall. However, it remains unclear whether their expected

benefits materialize and which school characteristics contribute to or potentially inhibit these

anticipated outcomes.

Furthermore, the benefits could depend on the admission year. To the extent that school

characteristics and their productivity are not fixed over time, the effects of elite schools

may also vary. In this context, even internally valid estimates may lack external validity

and be of limited policy use. For example, consider the case of a policymaker interested

in increasing the seats offered by elite schools. Whether past estimates of the effect of

elite schools on academic outcomes are informative for such a policy ultimately depends on

whether the school characteristics behind the effects differ from those in place when obtaining

the estimates.

In this paper, we study whether and why the estimated effects of elite schools on academic

outcomes change over time for a fixed set of elite schools and admission policies. The answer

to this question could also help explain differing effects across education markets to the

extent that they may differ in what the estimated effects are measuring.

We focus on the case of Mexico City over five years, from 2005 to 2009, and work with

yearly administrative data from its centralized high school admission system. To measure

academic outcomes, we combine the admission records with the records of an exit exam

students take during the last quarter of high school. To measure school inputs, we use yearly

school census data. This rich dataset presents three advantages for the analysis. First,

the admission process creates discontinuities around unpredictable cut-offs that randomize

students between admission to elite and non-elite schools, ensuring internally valid estimates.

Second, the centralized market is large, with around 250,000 applicants yearly. As the

admission process is the same throughout our study period, the large number of applicants
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allows us to estimate effects for each admission year without running into statistical precision

problems. Third, data on yearly school inputs allows us to assess their role in the estimated

effects of elite schools.

Estimating the effects of elite schools on academic outcomes is challenging because gain-

ing admission to an elite school may be correlated with unobservable student characteristics,

such as ability. Previous literature has addressed this problem by exploiting how central-

ized educational systems operate and using Regression Discontinuity Designs (RDDs) to

estimate causal effect(s). The intuition behind this identification strategy is that oversub-

scribed schools in centralized systems generate admission cut-offs that allow for comparing

academic outcomes between marginally admitted and marginally rejected students who are

ex-ante equivalent other than their admitted or rejected status. However, as non-parametric

estimation only uses data on individuals around admission cut-offs, a common practice is

pooling different cohorts of applicants to obtain an average estimate. As we show, this

practice may mask substantial heterogeneity when the relative quality of elite and non-elite

schools varies over time.

We take advantage of the large centralized system in Mexico City and estimate separate

RDDs for each admission cohort between 2005-2009. Our main results indicate that the

effect of being marginally admitted to an elite high school on end-of-high school math test

scores depends on the admission year and decreases across time. In particular, the effect

monotonically decreases yearly and changes from positive and statistically significant in 2005

to insignificant by 2009. We also find that marginal admission to an elite school increases

the probability of dropping out, but this effect is roughly constant over time. This alleviates

concerns regarding time changes in sample selection as an explanation for the time-varying

effects on test scores. In addition, we show that the change in peer quality induced by

marginal admission to an elite school is roughly constant over time.

To explain the trend of the effects on test scores, we explore changes over time in the

relative academic quality of elite and non-elite high schools. We first estimate individual

high school value-added on mathematics for each year and show that the gains in school

value-added induced by marginal admission to an elite school decreased over time. We then

decompose school value-added into observable school characteristics, parameters that map
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school characteristics into outputs, and unobservable school characteristics. Although elite

school admission implies a drastic change in several school characteristics, such as better

peers and more qualified teachers, these changes have stayed the same over time. Most of

the changes over time come from how these school characteristics map into school value-

added and changes in unobservable school characteristics. A potential explanation behind

our results is that during our study period, the government initiated a reform of curricular

alignment between high schools, including elite and non-elite schools. Such a policy could

affect how school characteristics map into school quality and affect schools in unobservable

ways.

Regarding our research question, the results tell us that the effect of marginal admission to

an elite school depends on the change in school quality induced by crossing their admission

thresholds. Furthermore, school quality is not time-invariant as schools may change in

observable and unobservable ways. Therefore, RDD parameter estimates of the sort studied

here are time-specific, constraining their external validity.

Our work contributes to two strands of the literature. First, it contributes to the exten-

sive literature that studies the academic effects of elite/selective schools.1 For the Mexico

City context Dustan et al. (2017) find large positive and statistically significant gains in

mathematics test scores from marginal admission to elite science schools. However, as we

show in this paper, this is only the case for the two cohorts of applicants they study. Beuer-

mann and Jackson (2022) review the results from this literature and finds that estimates

go from positive and statistically significant to not significant. The heterogeneity of these

results could be due to overall institutional differences across the markets being studied

(Hanushek, 2021). Yet, we find that estimates for a single market over time range over the

previously obtained estimates across markets. Thus, differences in school quality between

first and next-best schools across markets could also explain the diversity of results.

Second, we contribute to the literature on education production functions. As Todd and

Wolpin (2003) highlight, policy effects such as those obtained using RDDs do not necessarily

1See Clark (2010); Jackson (2010); Pop-Eleches and Urquiola (2013); Abdulkadiroğlu et al. (2014); Dobbie

and Fryer Jr (2014); Lucas and Mbiti (2014); Abdulkadiroğlu et al. (2017); Dustan et al. (2017); Beuermann

and Jackson (2022); Angrist et al. (2023).
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estimate production function parameters. Thus, when studying the effects of elite schools,

even if a study convincingly deals with selection bias and obtains some effect, it still needs

to be determined why there is an effect. Some prior literature has interpreted the effect

of marginal admission to a selective school as the effect of a discontinuous change in peer

quality (Jackson, 2010; Abdulkadiroğlu et al., 2014; Dobbie and Fryer Jr, 2014). However,

in our setting, the effect of elite schools on test scores changes even though the discontinuous

change in peer quality remains constant over time. More generally, following Altonji and

Mansfield (2018) framework, the effects of schools on individual academic outcomes depend

on individual inputs, group-level inputs, and inputs productivity. Thus, as group-level inputs

or their productivity may vary across time and context, there is no reason why a given set

of estimates should apply to any other period or context.

The remainder of the paper proceeds as follows. Section 2 describes the institutional

background of the market under study. Section 3 describes the data, samples, and outcomes

used for the analysis. Section 4 describes the empirical strategy and offers evidence on the

validity of the research design. Section 5 presents the main results of the paper. Sections 6

and 7 explore mechanisms. Section 8 concludes.

2 Institutional background

Elementary school in Mexico City is six years in length, middle school is three years, and

high school is three years. The centralized high school admission process in Mexico City

matches students with a middle school certificate to public high schools. Every year, the

market has around 250,000 applicants applying for seats in around 600 high schools.

The timeline of the admission process is as follows. At the end of January, applicants

receive a booklet that describes all the available public high schools in the market. Between

late February and early March, students submit a rank-ordered list (ROL) of up to twenty

high schools. At the end of June, students take a standardized admission exam. Exam

scores are released at the end of July, and students are matched to high schools based on

their exam scores, ROLs, and schools’ available seats. The admission process remained

unchanged during our study period (2005-2009).
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The admission exam evaluates students on the material covered during middle school

and in verbal and mathematical reasoning. The exam score takes integer values from 31 to

128. Students who score less than 31 are excluded from the admission process.

The matching process follows the serial dictatorship mechanism. This is a particular case

of the student proposing a deferred acceptance mechanism where all schools use the same

ranking of students. In Mexico City, all applicants are ranked based on their admission exam

scores. The highest-scoring students are assigned to their first choices. Then, in admission

score descending order, students are assigned to their highest-ranked schools with available

seats.

Every high school in Mexico City belongs to one of nine subsystems. Subsystems are

administrative units that manage a subset of schools. Two of the subsystems are considered

elite: the IPN and the UNAM. High schools in the IPN and UNAM subsystems are affiliated

with the country’s two most prestigious public universities. This group of high schools are

commonly referred as elite schools.

As an additional constraint, admission to any school affiliated with IPN and UNAM

requires students to have a middle school GPA higher than 7/10. In practice, this constraint

is not binding as the GPA requirement is satisfied by more than 90% of students each year.

Also, the minimum GPA to obtain a middle school certificate is 6/10.

From 2007 until 2014, during the last quarter of high school, students from public and

private schools took a standardized exam that evaluated them on mathematics and Spanish.

The government mainly used this test to assess high school-level performance. Students from

UNAM-affiliated high schools did not participate in this exam. For the rest of the paper, we

refer to this test as the exit exam.

3 Data

We have data on all participants in the centralized education market in Mexico City during

2005-2009. For each student we observe her ROL, admission exam score, GPA, and socio-

demographics such as gender and parental education.

We combine the admission records with the high school exit exam records during 2008-
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2014 to measure outcomes. For each cohort of applicants we match students across datasets

using their national IDs. We only work with students who participate for the first time in

the admission process such that we only observe their outcomes at most once. We match

students with their exam records between three to five years after application. Expected

high school duration is three years.

Students admitted to UNAM-affiliated schools do not participate in the exit exam, so we

do not have outcomes for these students. In the analysis we compare students admitted to

IPN schools with students admitted to non-IPN and non-UNAM schools. Throughout the

analysis period, the IPN subsystem has 16 affiliated schools that provide science oriented

education. For the rest of the paper we will refer to these 16 high schools as elite high schools

and all other high schools (excluding those affiliated to UNAM) as non-elite high schools.

Figure 1 shows the evolution of the sixteen elite schools’ admission cut-offs during our

study period. We define an admission cut-off as the lowest admission exam score of a student

admitted to an over-subscribed school. All elite schools are over-subscribed each admission

year. Panel (a) shows the admission cut-offs in levels. Panel (b) shows the admission cut-

offs as percentiles of the test score distribution during a given admission year. We highlight

two things from these figures. First, elite schools have relatively high admission cut-offs

as these schools are heavily over-subscribed. Second, the admission cut-offs are stable over

time, implying that the students’ ability at the cut-offs has not changed much over our study

period.

Our outcomes of interest are graduation/dropout and end-of-high school test scores. We

consider a dropout a student assigned to a high school in the admission process who does

not take the exit exam from three to five years later. For the students who do not drop out,

we consider their performance on the mathematics and Spanish tests as a measure of skills

at the end of high school.

We show some descriptive statistics in Figure 2. Students admitted to elite schools have

higher exit exam scores than students at non-elite schools throughout our study period.

They also have higher admission exam scores. The admission system creates stratification

across schools by initial ability, and this has not changed much over time. However, this

does not mean elite schools have a causal effect on exit exam test scores for any particular
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Figure 1: Elite cut-offs
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Note: This figure shows the admission cut-offs for each elite school over the period 2005-2009. Panel (a)

shows the cut-offs in levels, where the score takes integer values from 31 to 128. Panel (b) shows the same

cut-offs as percentiles of the distribution of test scores for each admission year.

Figure 2: Exams scores
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Note: This figure shows the admission and exit exam scores for students assigned to

elite and non-elite schools. We standardize each score within the distribution of scores

for each admission cohort.

year. We use the empirical strategy outlined in the next section to separate the effect of elite

schools on academic outcomes from what simply reflects the selection of better students.

Regarding school-level information, we obtain school characteristics from each year’s

school census (Formato 911). The school census tracks information on all schools in Mexico

at the campus level. The close to 600 schools in our region of analysis are distributed into

around 300 campuses, each belonging to one of the nine subsystems. The school census data
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includes information on teachers, students, and classrooms for each admission year.

4 Empirical strategy

4.1 Design

We want to estimate the effect of elite schools on academic outcomes for each admission

year. However, since students are not randomly allocated to schools, they may self-select

into elite schools for observable or unobservable reasons. To deal with the selection problem,

we compare the outcomes of students who prefer elite schools to non-elite schools and are

marginally admitted or rejected from elite schools (i.e., same ability). Under this design, we

look to obtain internally valid estimates of the effect of admission to elite schools for students

at the elite school’s admission cut-offs. We define a school admission cut-off as the score of

the last admitted student to an oversubscribed school. All elite schools are oversubscribed.

We follow Kirkeboen et al. (2016) strategy to estimate the effects of university majors

and institutions in a centralized education market. We consider the case where there are

only two institutions/subsystems, elite and non-elite. We compare the outcomes of students

with the same local institution ranking (i.e., elite≻non-elite), some of whom are admitted to

their first best while others gain admission to their next best institution. Table 1 shows the

types of applicants we include in our sample. This example considers two applicants with

the same local institution ranking. The applicant with a score of 79 gains admission to her

preferred institution, while the applicant with a score of 77 gains admission to her next-best

institution.

Notice that students rank schools in cut-off descending order in our stylized example. The

serial dictatorship algorithm guarantees that a student will never be assigned to a school

that is not ranked in cut-off descending order. Therefore, we modify the observed ROLs to

exclude all schools not ranked in cut-off descending order. ROLs subject to this modification

would lead to the same equilibrium allocation as the unmodified ones.

We work with a sample of students with ROLs that list an elite school as their first best

and a non-elite school as their next best in the local institution ranking. We use a Regression
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Table 1: Stylized example of two applicants at the margin (RD Sample)

ROL Institutions Cut-off

1st best Non-Elite 82

2nd best Elite 78

3rd best Non-Elite 76

4th best Non-Elite 53

Application score=79

Local Institution Ranking

Preferred Elite Yes

Next-best Non-Elite No

Application score=77

Local Institution Ranking

Preferred Elite No

Next-best Non-Elite Yes

Note: This table provides an example where two applicants

are on the margin of receiving an offer for an elite school and

a non-elite school.

Discontinuity Design (RDD) and focus on students close to the elite school admission cut-

offs. Since there are 16 elite schools, we have 16 admission cut-offs. The intuition behind

the identification strategy is that marginally admitted and rejected students from elite high

schools have similar observable and unobservable characteristics.

Our empirical model is:

Yik = µk + α1admiti + α2(Si − sk) + α3(Si − sk)× admiti + ϵik, (1)

where index i is for individual, index k is for elite school admission cut-off. We have K =

16 elite schools and stack individuals with different elite cut-offs in the estimation sample.

Our specification includes cut-off fixed effects µk. We include a dummy variable for elite

school admission admiti. We denote the admission exam score Si and sk is the elite school

admission cut-off relevant to student i. In this specification admiti = 1 when Si − sk ≥ 0.
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Figure 3: Density
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Note: This figure shows the density of the centered running variable. The vertical line

indicates the admission threshold.

The coefficient of interest is α1. It measures the intent-to-treat (ITT) effect of gaining

marginal admission to an elite high school instead of a non-elite one. For the estimation, we

use the optimal bandwidth obtained by following Calonico et al. (2014), which minimizes the

mean square error. Within the optimal bandwidth, we estimate the parameters in Equation

1 using a local linear regression with a triangular kernel and cluster the standard errors at

the admitted high school level.

Since the admission process remains the same from 2005-2009, we follow the same design

and empirical model for each admission cohort.

4.2 Validity

Before proceeding with the results, we provide evidence of the validity of the design. Follow-

ing Imbens and Lemieux (2008), certain conditions need to be met to guarantee the validity

of an RDD. Figure 3 shows the density of the centered admission score for the pooled sample

for 2005-2009. There is no evidence that the density is discontinuous around the centered

cut-offs, which indicates that manipulation of the running variable is unlikely. A formal

statistical test does not reject the continuity of the density (p-value=0.92). As we estimate

RDDs for each admission cohort, we also show evidence of a lack of manipulation for each

cohort. We include these results in Appendix B.
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Table 2: Covariates

Girl GPA Father Siblings

RD Estimate 0.012 0.002 0.011 0.009

(0.011) (0.012) (0.008) (0.025)

Optimal BW 8.996 14.542 13.378 7.696

Mean 0.434 8.247 0.317 1.935

N 40254.000 58423.000 51427.000 36187.000

Note: This table shows RD estimates following the methods in Calonico et al. (2014)

and the associated software package rdrobust. Each column indicate a different outcome

variable. For each outcome we also report the associated optimal bandwidth, the average

outcome for the marginally rejected students, and the number of observations. Robust

standard errors in parenthesis.

As further support for the validity of the design, Table 2 presents results from estimating

Equation 1 over predetermined covariates expected to be continuous around the centered

admission cut-offs. For the pooled sample of years 2005-2019, being marginally admitted to

an elite high school has no statistically significant effect on family income, gender, parents’

education, or students’ GPA in middle school. We report the estimates on predetermined

covariates for each admission cohort in Appendix C.

Overall, we find no evidence of manipulation in the pooled sample or for each separate

admission cohort, which we take as evidence of the validity of our design.

5 Results

We first show the results for the pooled sample of cohorts 2005-2009. Table 3 shows that

marginal admission to an elite school has a positive and statistically significant effect on

mathematics test scores, a non-statistically significant effect on Spanish test scores, and

a negative and statistically significant effect on the probability of taking the exit exam

(i.e., graduating). However, pooling multiple years together may be masking substantial

heterogeneity in the effects by year. Importantly, our sample sizes are large enough to allow

us to implement the same empirical design on a yearly basis.
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Table 3: Pooled sample 2005-2009

Math Spanish Test Taker

RD Estimate 0.053∗∗∗ -0.027 -0.072∗∗∗

(0.019) (0.021) (0.010)

Optimal BW 12.611 10.355 12.659

Mean 0.143 0.137 0.601

N 31070.000 27532.000 53088.000

Note: This table shows RD estimates following the methods in Calonico

et al. (2014) and the associated software package rdrobust. Each column

indicate a different outcome variable. For each outcome we also report

the associated optimal bandwidth, the average outcome for the marginally

rejected students, and the number of observations. Robust standard errors

in parenthesis.

To study if the effect of being marginally admitted to an elite high school on test scores

changes over time, we estimate Equation 1 separately for each admission cohort between

2005 and 2009. Table 4 presents estimated parameters for mathematics performance as

the outcome variable. A clear pattern emerges: the effect goes from being positive and

significant in 2005 but steadily decreases and becomes not significant for later cohorts. We

reject the equality of coefficients at conventional statistical significance levels and show that

the coefficients have a statistically significant negative linear time trend. Dustan et al.

(2017) only study admission cohorts 2005 and 2006, finding similar effects on mathematics

performance for those two cohorts.2 However, this effect is not time invariant and disappears

for later admission cohorts.

Table 5 shows that marginal admission to an elite science school does not have a statis-

tically significant effect on Spanish scores for any admission cohort during the study period

2005-2009. We believe this is because the elite schools we study here are highly focused on

providing science education. Dustan et al. (2017) also find no effects on Spanish scores for

admission cohorts 2005 and 2006. We do not reject the equality of coefficients across time

2Their sample selection criteria are different from ours. Appendix D shows a replication of their results

using their sample selection criteria.
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Table 4: Math

2005 2006 2007 2008 2009

RD Estimate 0.199∗∗∗ 0.178∗∗∗ 0.033 -0.023 -0.041

(0.042) (0.038) (0.040) (0.038) (0.040)

Optimal BW 11.576 13.308 13.006 11.565 12.615

Mean 0.111 0.102 0.144 0.179 0.161

N 4,766 5,663 6,482 6,800 7,258

H0: 2005=2006=2007=2008=2009, p-value: 0.000

Linear trend: coef -0.070, p-value 0.000

Note: This table shows RD estimates following the methods in Calonico et al. (2014)

and the associated software package rdrobust. Each column indicate a different admission

cohort. For each cohort we also report the associated optimal bandwidth, the average

outcome for the marginally rejected students, and the number of observations. Robust

standard errors in parenthesis.

Table 5: Effects on Spanish by year

2005 2006 2007 2008 2009

RD Estimate -0.023 0.038 -0.026 -0.075 -0.038

(0.050) (0.043) (0.034) (0.052) (0.039)

Optimal BW 12.628 12.134 11.188 11.858 11.623

Mean 0.101 0.080 0.145 0.165 0.111

N 5,064 5,417 5,827 6,800 6,813

H0: 2005=2006=2007=2008=2009, p-value: 0.769

Linear trend: coef -0.016, p-value 0.255

Note: This table shows RD estimates following the methods in Calonico et al. (2014)

and the associated software package rdrobust. Each column indicate a different ad-

mission cohort. For each cohort we also report the associated optimal bandwidth, the

average outcome for the marginally rejected students, and the number of observations.

Robust standard errors in parenthesis.

and find no statistically significant linear time trend in them.

Overall, the results show the time specificity of the estimated effects on mathematics
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performance. The next step is to understand why this effect experiences such a dramatic

change over time.

6 Why did the effect change over time?

We only observe end of high school test scores for those who participate in the exit exam.

Therefore, time varying effects on exam participation could potentially explain time varying

effects on test scores. To asses this possibility, we estimate the year-specific effect of marginal

admission to an elite school on the probability of taking the exit exam. We follow our

empirical specification in Equation 1.

The results in Table 6 indicate that the estimated coefficients are negative, between 8 to

10 percentage points, and always statistically significant. However, there is no clear pattern

in the effects. Furthermore, we cannot reject the equality of coefficients over time, and

their linear trend is not statistically significant. We take this as evidence against differential

selection over time. Under non-differential selection over time, methodologies, such as the

one in Lee (2009), to correct for bias would shift the estimates on test scores in the same

direction without affecting the time trend on the effect on mathematics test scores.

A common interpretation in the selective school literature is that the RDD estimated

parameter measures peer effects. The logic behind this interpretation is that marginally

admitted students to selective schools experience increased peer quality relative to their

counterfactual alternatives. For example, this occurs when selective schools admit students

based on skill measures, as in Mexico City. Therefore, if the discontinuous jump in peer

quality has changed over time, then we would expect time-varying effects on test scores.

In Table 7, we show the jump in peer quality for students marginally admitted to an elite

school relative to their next-best alternative. We measure peer quality using the average

admission exam score of all the admitted students to a school in a given year. Our results

show that admission to an elite school implies an increase in peer quality for each year in

our sample. Nevertheless, the estimated effect on peer quality is roughly constant over time.

We do not reject the equality of the yearly parameters or find evidence of a linear trend

in them. Therefore, changes in average peer quality experienced by those admitted to elite
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Table 6: Effects on graduation by year

2005 2006 2007 2008 2009

RD Estimate -0.082∗∗∗ -0.058∗∗ -0.064∗∗ -0.062∗∗∗ -0.101∗∗∗

(0.025) (0.025) (0.027) (0.020) (0.021)

Optimal BW 10.441 9.431 11.570 8.351 10.539

Mean 0.624 0.615 0.585 0.585 0.614

N 7,429 7,573 10,159 9,446 10,830

H0: 2005=2006=2007=2008=2009, p-value: 0.656

Linear trend: coef -0.004, p-value 0.562

Note: This table shows RD estimates following the methods in Calonico et al. (2014) and

the associated software package rdrobust. Each column indicate a different admission cohort.

For each cohort we also report the associated optimal bandwidth, the average outcome for

the marginally rejected students, and the number of observations. Robust standard errors in

parenthesis.

Table 7: Peers exam

2005 2006 2007 2008 2009

RD Estimate 17.424∗∗∗ 17.303∗∗∗ 18.432∗∗∗ 18.341∗∗∗ 18.625∗∗∗

(0.923) (0.999) (0.966) (0.917) (1.002)

Optimal BW 10.334 10.614 10.206 11.509 14.063

Mean 63.906 66.282 65.576 66.457 62.585

N 7,429 8,155 9,534 11,871 13,753

H0: 2005=2006=2007=2008=2009, p-value: 0.853

Linear trend: coef 0.280, p-value 0.323

Note: This table shows RD estimates following the methods in Calonico et al. (2014) and the

associated software package rdrobust. Each column indicate a different admission cohort. For each

cohort we also report the associated optimal bandwidth, the average outcome for the marginally

rejected students, and the number of observations. Robust standard errors in parenthesis.

schools cannot explain the decreasing effect on test scores.

We next consider changes in school quality as an explanation behind our time varying

effects. Access to elite schools could have a positive effect on test scores if they give students
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access to higher quality schools relative to their next best alternatives. Therefore, if the

relative school quality between first and next best alternatives have been changing over

time, the RDD estimated parameter would also change over time. To measure individual

school quality, we estimate a value-added model following Equation 2.

Yit =
J∑

j=0

αjtDijt +X ′
itΓt + νit, (2)

where Xi is a vector that includes the standardized admission exam score and standard-

ized middle school GPA. The outcome variable Yit measures mathematics exam performance

at the end of high school. Our parameters of interest are αjt, which measure school quality

for each school j and for each year t.

We then use the value-added estimated parameters as the outcome variable in our RDD

estimations. We aim to capture if there is a discontinuous jump in school value-added

between students marginally admitted to elite schools and those marginally rejected. In

addition, we aim to measure if the effect on school value-added has changed over time. In

Table 7 we show that marginal admission to elite schools results in gaining access to schools

with higher value-added. In addition, the effect on school quality is decreasing over time. We

reject the equality of coefficients across time and find a negative and statistically significant

linear trend in the estimated coefficients.

With this evidence, we conclude that the decreasing effects of marginal admission to elite

schools on test scores are not due to changes in the composition of test takers over time

or changes in peer quality. Instead, our results suggest that the difference in the quality

of schools that treated and untreated students are exposed to is behind the time-varying

effects.

7 Why did school quality change?

When estimating school value-added parameters, we estimate fixed effects that capture school

characteristics and their productivities. Therefore, if the school characteristics or their pro-

ductivities change over time, the value-added estimated parameters will also change over
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Table 8: Value-added (α̂jt)

2005 2006 2007 2008 2009

RD Estimate 0.270∗∗∗ 0.258∗∗∗ 0.133∗∗∗ 0.055∗∗∗ 0.013

(0.025) (0.021) (0.026) (0.015) (0.024)

Optimal BW 14.580 15.973 13.647 14.039 16.147

Mean -0.033 -0.050 -0.044 -0.051 -0.076

N 9,151 10,333 11,274 13,737 14,937

H0: 2005=2006=2007=2008=2009, p-value: 0.000

Linear trend: coef -0.071, p-value 0.000

Note: This table shows RD estimates following the methods in Calonico et al. (2014)

and the associated software package rdrobust. Each column indicate a different admission

cohort. For each cohort we also report the associated optimal bandwidth, the average

outcome for the marginally rejected students, and the number of observations. Robust

standard errors in parenthesis.

time. We consider the following equation relating school characteristics to school value-

added:

αjt = Z ′
jtθt + ηjt, (3)

where Zj is a vector of school characteristics that includes average peers’ admission score,

average peers’ GPA, teachers per pupil, female teachers per pupil, full-time teachers per

pupil, highly qualified teachers per pupil, and classrooms per pupil. We estimate Equation

3 to separate the part of value-added explained by observable school characteristics and

their productivities (Z ′
jtθ̂t) from unobservable school characteristics (η̂jt). We then use these

estimates as outcome variables in our RDD specification.

In Table 9 we show that marginal admission to elite schools is associated with an increase

in the fitted value Z ′
jtθ̂t for the 2005 admission cohort. However, for later cohorts the effect

becomes negative and monotonically decreasing. We reject equality of coefficients over time

and we find they have a statistically significant negative linear trend.

The change in the effect on the fitted value can be due to time changes in school char-
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Table 9: Z ′
jtθ̂t

2005 2006 2007 2008 2009

RD Estimate 0.018∗∗∗ -0.101∗∗∗ -0.063∗∗∗ -0.070∗∗∗ -0.073∗∗∗

(0.003) (0.010) (0.014) (0.012) (0.019)

Optimal BW 11.075 13.817 12.180 11.817 11.603

Mean 0.012 -0.008 0.016 -0.005 0.004

N 7,812 9,297 10,488 11,500 11,296

H0: 2005=2006=2007=2008=2009, p-value: 0.000

Linear trend: coef -0.013, p-value 0.006

Note: This table shows RD estimates following the methods in Calonico et al. (2014) and

the associated software package rdrobust. Each column indicate a different admission cohort.

For each cohort we also report the associated optimal bandwidth, the average outcome for the

marginally rejected students, and the number of observations. Robust standard errors in paren-

thesis.

acteristics (Zjt), time changes in productivities (θt), or both. In Appendix A, we use each

school characteristic as the outcome variable in the RDD specification and find no effect

pattern or time trend. Therefore, we argue that the time-varying effect on the fitted value

is due mainly to changes in the combined productivities of school characteristics.

A possible explanation behind the change in the productivities of school characteristics

for elite and non-elite schools is that a curriculum alignment policy was in place during our

study period. Notice that such a policy would not likely change the school characteristics

levels but would change how productive the same levels are in creating school quality. There-

fore, a curriculum alignment policy that imposes similar curriculums at elite and non-elite

schools would align the productivities of school characteristics across sectors and decrease

the treatment effect of marginal admission to an elite school.

We next consider the estimated residuals η̂jt, which we interpret as a measure of unobserv-

able school characteristics that affect school quality. In Table 10, we show the results of our

RDD estimations using η̂jt as the outcome variable. We find that marginal admission to elite

schools implies gains in unobservable school characteristics for all years between 2005-2009.

However, this effect decreases over time. We reject equality of effects over time and find a
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Table 10: η̂jt

2005 2006 2007 2008 2009

RD Estimate 0.252∗∗∗ 0.358∗∗∗ 0.190∗∗∗ 0.123∗∗∗ 0.087∗∗∗

(0.024) (0.026) (0.023) (0.015) (0.024)

Optimal BW 16.921 16.579 14.010 11.627 14.730

Mean -0.044 -0.046 -0.057 -0.043 -0.081

N 9,747 10,349 11,525 11,500 13,390

H0: 2005=2006=2007=2008=2009, p-value: 0.000

Linear trend: coef -0.058, p-value 0.000

Note: This table shows RD estimates following the methods in Calonico et al. (2014) and

the associated software package rdrobust. Each column indicate a different admission cohort.

For each cohort we also report the associated optimal bandwidth, the average outcome for

the marginally rejected students, and the number of observations. Robust standard errors

in parenthesis.

statistically significant positive linear trend in coefficients. Therefore, time changes in unob-

served school characteristics could also be behind our time-varying effects on mathematics

test scores.

The results in this section highlight that school value-added captures differences in school

characteristics and their associated productivities. Since school characteristics and produc-

tivities can change over time, value-added can also change. Thus, if the effect of elite schools

on academic outcomes is due to students gaining access to higher value-added schools, then

this effect does not need to be constant over time. The same applies when comparing effects

across different contexts, as the estimated parameters may not measure the same treatments.

8 Conclusions

The results presented in this paper indicate that the effect of being marginally admitted to

an elite high school is not constant over time and relates to time changes in relative school

quality between elite schools and their next-best alternatives. In the case of Mexico City, we

find that over five years (2005-2009), the effect of marginal admission to elite science schools
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on mathematics test scores monotonically decreased and went from positive and statistically

significant to not significant.

We explain the time-varying effect by showing that the gains in school quality from

marginal admission to elite schools monotonically decreased during our study period. The

gains in peer quality due to marginal admission did not change over time. Also, there

were no time changes in the effect of marginal admission on exit exam test taking. A

plausible explanation for the changes in school quality gains is a curriculum alignment policy

in place during our study period. Such policy affected how school inputs mapped into school

value-added. In addition, there were also changes in the school value-added part that were

unexplained by observed school characteristics.

Our results highlight that when studying the effects of elite/selective schools it is impor-

tant to understand what is the estimated parameter measuring in each particular context. In

this sense, caution when generalizing results from within-country analyses to other countries

should also be extended to generalizing within-period studies to different time periods.
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A Other school characteristics

Table 11: Change in average peers GPA

2005 2006 2007 2008 2009

RD Estimate 0.510∗∗∗ 0.494∗∗∗ 0.501∗∗∗ 0.475∗∗∗ 0.476∗∗∗

(0.023) (0.024) (0.021) (0.023) (0.020)

b-c CI [.457 ; .555] [.451 ; .551] [.461 ; .545] [.435 ; .526] [.441 ; .522]

Optimal BW 14.134 13.333 14.278 16.773 13.920

Mean 7.829 7.867 7.900 7.912 7.949

N 9,151 9,545 11,806 14,817 13,084

H0: 2005=2009, p-value: 0.445

H0: 2005=2006=2007=2008=2009, p-value: 0.881

Linear trend: coef -0.007, p-value 0.298

Table 12: Teachers per pupil

2005 2006 2007 2008 2009

RD Estimate 0.024∗∗∗ 0.017∗∗∗ 0.047∗∗∗ 0.017∗∗∗ 0.020∗∗∗

(0.005) (0.002) (0.004) (0.003) (0.003)

b-c CI [.015 ; .034] [.012 ; .021] [.039 ; .053] [.012 ; .024] [.014 ; .026]

Optimal BW 15.072 13.150 11.558 20.510 13.734

Mean 0.056 0.051 0.026 0.053 0.050

N 9,343 9,297 9,927 15,963 12,745

Standard errors in parentheses

H0: 2005=2009, p-value: 0.395

H0: 2005=2006=2007=2008=2009, p-value: 0.000

Linear trend: coef -0.001, p-value 0.215

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 13: Female teachers per pupil

2005 2006 2007 2008 2009

RD Estimate 0.004∗ 0.003∗ 0.014∗∗∗ 0.001 0.001

(0.002) (0.002) (0.002) (0.002) (0.002)

b-c CI [-.001 ; .008] [-.001 ; .006] [.009 ; .018] [-.003 ; .005] [-.003 ; .005]

Optimal BW 13.835 16.980 13.065 16.280 14.020

Mean 0.021 0.019 0.010 0.021 0.020

N 8,581 10,349 11,010 14,311 13,390

Standard errors in parentheses

H0: 2005=2009, p-value: 0.411

H0: 2005=2006=2007=2008=2009, p-value: 0.000

Linear trend: coef -0.001, p-value 0.138

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 14: Full time teachers per pupil

2005 2006 2007 2008 2009

RD Estimate 0.010∗∗∗ 0.011∗∗∗ 0.010∗∗∗ 0.012∗∗∗ 0.009∗∗∗

(0.001) (0.001) (0.001) (0.001) (0.001)

b-c CI [.007 ; .012] [.008 ; .014] [.007 ; .013] [.01 ; .016] [.006 ; .012]

Optimal BW 13.553 12.126 13.795 14.412 13.422

Mean 0.012 0.011 0.011 0.011 0.011

N 8,581 8,873 11,010 13,282 12,745

Standard errors in parentheses

H0: 2005=2009, p-value: 0.828

H0: 2005=2006=2007=2008=2009, p-value: 0.344

Linear trend: coef 0.000, p-value 0.854

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 15: High education teachers per pupil

2005 2006 2007 2008 2009

RD Estimate -0.000 0.001∗∗∗ 0.001∗∗ 0.000 0.004

(0.000) (0.000) (0.001) (0.000) (0.002)

b-c CI [-.001 ; 0] [0 ; .002] [0 ; .002] [-.001 ; .001] [-.001 ; .008]

Optimal BW 9.735 16.151 16.671 16.190 12.456

Mean 0.001 0.002 0.002 0.002 0.002

N 6,781 10,349 12,394 14,311 12,029

Standard errors in parentheses

H0: 2005=2009, p-value: 0.108

H0: 2005=2006=2007=2008=2009, p-value: 0.015

Linear trend: coef 0.001, p-value 0.118

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 16: Classrooms

2005 2006 2007 2008 2009

RD Estimate -0.001 0.004∗∗∗ 0.001∗∗ 0.002∗∗ 0.001

(0.002) (0.001) (0.001) (0.001) (0.001)

Optimal BW 13.854 10.645 14.069 12.807 12.602

Mean 0.023 0.022 0.022 0.021 0.021

N 8,581 7,955 11,525 12,126 12,029

Standard errors in parentheses

H0: 2005=2009, p-value: 0.310

H0: 2005=2006=2007=2008=2009, p-value: 0.026

Linear trend: coef 0.001, p-value 0.142

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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B Density by cohort

Figure 4: Density test
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C Covariates by cohort

Table 17: Girl

2005 2006 2007 2008 2009

RD Estimate -0.017 0.014 0.012 0.022 0.025

(0.020) (0.025) (0.023) (0.023) (0.028)

b-c CI [-.061 ; .031] [-.042 ; .075] [-.04 ; .066] [-.033 ; .075] [-.04 ; .086]

Optimal BW 12.177 8.676 10.922 9.602 11.005

Mean 0.422 0.407 0.448 0.459 0.438

N 8,374 7,021 9,534 10,276 11,584

Standard errors in parentheses

H0: 2005=2009, p-value:

H0: 2005=2006=2007=2008=2009, p-value:

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 18: GPA

2005 2006 2007 2008 2009

RD Estimate 0.009 -0.017 -0.014 0.042 -0.014

(0.030) (0.030) (0.025) (0.028) (0.034)

b-c CI [-.061 ; .083] [-.092 ; .051] [-.078 ; .035] [-.012 ; .113] [-.096 ; .059]

Optimal BW 10.759 10.573 12.818 11.679 11.138

Mean 8.205 8.218 8.254 8.258 8.325

N 7,429 8,155 10,740 11,871 11,584

Standard errors in parentheses

H0: 2005=2009, p-value:

H0: 2005=2006=2007=2008=2009, p-value:

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 19: Father education

2005 2006 2007 2008 2009

RD Estimate -0.010 0.026 0.020 0.019 -0.010

(0.021) (0.017) (0.019) (0.021) (0.021)

b-c CI [-.067 ; .031] [-.01 ; .066] [-.026 ; .066] [-.025 ; .073] [-.064 ; .038]

Optimal BW 9.483 16.071 10.152 8.908 9.780

Mean 0.308 0.288 0.328 0.343 0.346

N 6,398 9,825 8,767 8,708 9,228

Standard errors in parentheses

H0: 2005=2009, p-value:

H0: 2005=2006=2007=2008=2009, p-value:

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 20: Siblings

2005 2006 2007 2008 2009

RD Estimate 0.027 -0.048 -0.025 -0.040 0.070

(0.064) (0.062) (0.050) (0.051) (0.046)

b-c CI [-.127 ; .174] [-.214 ; .066] [-.157 ; .077] [-.177 ; .062] [-.024 ; .186]

Optimal BW 9.692 7.144 8.870 7.456 9.190

Mean 2.080 2.011 1.968 1.885 1.829

N 6,869 6,346 8,108 8,413 10,021

Standard errors in parentheses

H0: 2005=2009, p-value:

H0: 2005=2006=2007=2008=2009, p-value:

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

D Replication

In order to have an initial reference for my estimates, I replicate the results obtained by

Dustan et al. (2017) using COMIPEMS data for 2005-2006. Table 21 presents the results of
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this exercise.

Table 21: Effects of elite assigment, 2005-2006

(1) (2) (3)

dropout math spanish

admit 0.094*** 0.197*** 0.028

(0.017) (0.030) (0.031)

N 17850 11959 11216

The effect of elite assignment on the probability of dropout is identical to the result they

obtained, and it is also statistically significant at 99%.

The effect on the mathematics test score it is slightly smaller than their result (their

point estimate is 0.246) but is also statistically significant at 99%. This difference comes

from the way we merge the COMIPEMS and ENLACE datasets, since for some students

that did not have the unique identifier (mostly elite students) they imposed the condition

that they finished high school at the same high school were they ended up assigned. I do

not impose this condition because I consider it creates selection problems when calculating

the ITT effect. Instead, I solve the issue of missing identifiers by creating my own identifier

for all the students (based on their names).

Lastly, the effect on the Spanish test score is similar in magnitude and it is also not

statistically significant.
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